K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2020

Cách 1: 

Số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0.

(x;y) chỉ có thể (C;C); (L;L); (C;L); (L;C) vì có 5 số 4 dạng nên tồn tại 2 số cùng một dạng nên tích 2 số này là số chính phương.

Cách 2:

Ta dễ dàng chứng minh được trong 3 số tự nhiên bất kỳ luôn tìm được 2 số bất kỳ mà tổng của chúng chia hết cho 2.

Vì số trong 5 số có dạng 2x.3y trong đó x,y là số tự nhiên khác 0 nên ta luôn chọn được 2 số mà tích của nó là số chính phương.

7 tháng 1 2017

(Modulo 3, nha bạn.)

Giả sử tồn tại 5 số thoả đề.

Trong 5 số nguyên dương phân biệt đó sẽ xảy ra 2 trường hợp:

1. Có 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2.

Khi đó, tổng 3 số này chia hết cho 3 (vô lí).

2. 5 số này khi chia cho 3 chỉ còn 2 loại số dư mà thôi.

Khi đó, theo nguyên lí Dirichlet thì tồn tại 3 số cùng số dư khi chia cho 3. Tổng 3 số này chia hết cho 3 (vô lí nốt).

Vậy điều giả sử là sai.

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2...
Đọc tiếp

1, Tìm các số tự nhiên x,y sao cho: p^x = y^4 + 4 biết p là số nguyên tố

2, Tìm tất cả số tự nhiên n thỏa mãn 2n + 1, 3n + 1 là các số cp, 2n + 9 là các số ngtố

3, Tồn tại hay không số nguyên dương n để n^5 – n + 2 là số chính phương

4, Tìm bộ số nguyên dương ( m,n ) sao cho p = m^2 + n^2 là số ngtố và m^3 + n^3 – 4 chia hết cho p

5, Cho 3 số tự nhiên a,b,c thỏa mãn điều kiện: a – b là số ngtố và 3c^2 = ab  +c ( a + b )

Chứng minh: 8c + 1 là số cp

6, Cho các số nguyên dương phân biệt x,y sao cho ( x – y )^4 = x^3 – y^3

Chứng minh: 9x – 1 là lập phương đúng

7, Tìm các số nguyên tố a,b,c sao cho a^2 + 5ab + b^2 = 7^c

8, Cho các số nguyên dương x,y thỏa mãn x > y và ( x – y, xy + 1 ) = ( x + y, xy – 1 ) = 1

Chứng minh: ( x + y )^2 + ( xy – 1 )^2  không phải là số cp

9, Tìm các số nguyên dương x,y và số ngtố p để x^3 + y^3 = p^2

10, Tìm tất cả các số nguyên dương n để 49n^2 – 35n – 6 là lập phương 1 số nguyên dương

11, Cho các số nguyên n thuộc Z, CM:

A = n^5 - 5n^3 + 4n \(⋮\)30

B = n^3 - 3n^2 - n + 3 \(⋮\)48 vs n lẻ

C = n^5 - n \(⋮\)30
D = n^7 - n \(⋮\)42

0
26 tháng 4 2017

bài 1 áp dụng bất đẳng thức Cô-si swatch ta có:

\(\frac{a^2}{a^2+2bc}+\frac{b^2}{b^2+2ac}+\frac{c^2}{c^2+2ab}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+2ab+2bc+2ac}\)=1

dấu bằng xảy ra khi nào bạn tự tìm nh

24 tháng 3 2018

Dễ thấy VP chia hết chi 11 nên VT cũng phải chia hết cho 11

\(\Rightarrow1999y⋮11\)

\(\Rightarrow y⋮11\)

Mà vì y nguyên dương nên 

\(\Rightarrow y\ge11\)

\(\Rightarrow1999y\ge11.1999\left(1\right)\)

Bên cạnh đó ta lại có x nguyên dương nên

\(\Rightarrow11x>0\left(2\right)\)

Từ (1) và (2) \(\Rightarrow11x+1999y>11.1999\)

Vậy bài toán không có nghiệm nguyên dương.

24 tháng 3 2018

Dễ thấy \(VP⋮11\Rightarrow VT\)cũng chia hết cho 11

\(\Rightarrow1999y⋮11\)

\(\Rightarrow y\)cũng phải chia hết cho 11

Mà y là số dương nên: \(11\le y\)

\(\Rightarrow1999y=11.1999\) (1)

Mà bên cạnh đó, lại có x là số dương ,nên: 11x > 0  (2)

Từ (1) và (2),ta suy ra: \(11x+1999y>11,1999\)

Vậy bài toán không có nghiệm nguyên dương

DD
19 tháng 7 2021

a) \(2xy-y^2-6x+4y=7\)

\(\Leftrightarrow2xy-6x-y^2+3y+y-3=4\)

\(\Leftrightarrow\left(2x-y+1\right)\left(y-3\right)=4\)

Tới đây bạn xét bảng giá trị thu được nghiệm \(\left(x,y\right)\).

b) \(x^2+y^2-x⋮xy\Rightarrow x^2+y^2-x⋮x\Rightarrow y^2⋮x\).

Đặt \(y^2=kx,\left(k\inℤ\right),d=\left(x,k\right)\).

\(x^2+\left(kx\right)^2-x⋮xy\Rightarrow x+k^2x-1⋮y\).

suy ra \(x+k^2x-1⋮d\Rightarrow1⋮d\Rightarrow d=1\).

Do đó \(kx=y^2\)mà \(\left(k,x\right)=1\)nên \(x\)là số chính phương.