Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: $p$ là số nguyên tố $>3$
suy ra $p\not\vdots 3$
Số chính phương chia 3 dư 0 hoặc 1 mà $p^2$ là số chính phương
$p^2\not\vdots 3$ suy ra $p^2 \equiv 1 (mod 3) $
Mà $2009 \equiv 2 (mod 3)$
nên $p^2+2009 \equiv 3 \equiv 0 (mod 3)$
Hay $p^2+2009 \vdots 3$
mà $p^2+2009>3$ nên $p^2+2009$ là hợp số
p là số nguyên tố lớn hơn 3 => p có dạng 3k+1 hoặc 3k+2
Mà dạng 3k+1 không thể xảy ra nên p = 3k+2
Do đó, ta có: p2+2012 = (3k+2)2+2012 = (3k+2)(3k+2)+2012
= 3k(3k+2)+2(3k+2)+2012 = 9k2+6k+6k+4+2012
= 9k2+12k+2016 = 3(3k2+4k+672)
=> p2+2012 chia hết cho 3 => p2+2012 là hợp số
p nguyên tố > 3 nên p ko chia hết cho 3
=> p^2 chia cho 3 dư 1 ( vì số chính phương chia 3 dư 0 hoặc 1 mà p^2 ko chia hết cho 3 )
=> p^2+2009 chia 3 dư 1+2009 = 2010
Mà 2010 chia hết cho 3 => p^2+2009 chia hết cho 3
Lại có : p^2+2009 > 3 => p^2+2009 là hợp số
Tk mk nha
Ta có : p là số nguyên tố lớn hơn 3
=> p lẻ
=> p^2 lẻ
=> p^2 + 2009 chẵn
Mà ta có : p > 3
=> p^2 > 3 => p^2 + 2009 > 3
=> p^2 + 2009 là hợp số ( ĐPCM )
\(\text{p là số nguyên tố lớn hơn 3 nên p = 3k + 1 hoặc p = 3k + 2 (k}\in\text{N*)}\)
- Nếu p = 3k + 1 thì \(p^2+2009=\left(3k+1\right)^2+2009=9k^2+1+2009=9k^2+2010=3.\left(3k^2+670\right)\), là hợp số
- Nếu p = 3k + 2 thì \(p^2+2009=\left(3k+4\right)^2+2009=9k^2+4+2009=9k^2+2013=3.\left(3k^2+671\right)\), là hợp số.
Kết luận : p2 + 2009 là hợp số.
p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2009 = lẻ + lẻ = chẵn => p2 + 2009 là hợp số
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 .
+ Nếu p= 3k+1 (k>0):
p2+14=(3k+1)2+14=9k2+6k+1+14=9k2+6k+15 chia hết cho 3.
=>p2+14 là hợp số.
+ Nếu p= 3k+2 (k>0):
p2+14=(3k+2)2+14=9k2+12k+4+14=9k2+12k+18 chia hết cho 3.
=>p2+15 là hợp số.
p là số nguyên tố lớn hơn 3 => p=3k+1 hoặc p=3k+2
Nếu p=3k+1 => 2p+1=2(3k+1)+1=6k+2+1=6k+3 là hợp số (loại)
=>p=3k+2
=>4p+1=4(3k+2)+1=12k+8+1=12k+9 là hợp số (đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
Vì 20p+1 là 1 số nguyên tố
=) 20p+1 không chia hết cho 3
=) 20p+1 : 3 dư 1 và dư 2
*Với 20p+1 : 3 dư 1 thì =) 20p+1+2 \(⋮3\)
*Với 20p+1 : 3 dư 2 thì =) 20p+1+1\(⋮3\)=) 20p+2\(⋮3\)=) 2.(10p+1)\(⋮3\)
(=) 10p+1\(⋮3\)( Vì 2 không chia hết cho 3 )
Vậy 10p+1 là hợp số (Đpcm)
Vì p là số nguyên tố lớn hơn 3 nên p có dạng 3k+1 hoặc 3k+2 (k thuộc N).
* Với p=3k+1, ta có:
20p+1=20.(3k+1)+1=60k+20+1=60k+21 chia hết cho 3 => là hợp số=> loại
*Với p=3k+2, ta có:
20p+1=20.(3k+2)+1=60k+40+1=60k+41(là số nguyên tố)
10p+1=10.(3k+2)+1=30k+20+1=30k+21 chia hết cho 3 => là hợp số
Vậy với p là số nguyên tố lớn hơn 3 và 20p+1 cũng là số nguyên tố thì 10p+1 là hợp số.
Vì p là số nguyên tố lớn hơn 3 nên p sẽ có 2 dạng đó là: 3k + 1 và 3k + 2.
Ta chia làm 2 trường hợp:
- TH1: p = 3k + 1
=> 2p + 1 = 2.(3k + 1) + 1 = 6k + 2 + 1 = 6k + 3 = 3.(2k + 1) là hợp số.
=> TH này bị loại vì theo đề bài 2p + 1 phải là số nguyên tố.
- TH2: p = 3k + 2
=> 2p + 1 = 2.(3k + 2) + 1 = 6k + 4 + 5 = 6k + 5 là số nguyên tố.
=> TH này được chọn vì đúng theo yêu cầu của đề bài.
=> 4p + 1 = 4.(3k + 2) + 1 = 12k + 8 + 1 = 12k + 9 = 3.(4k + 3) là hợp số.
Vậy 4p + 1 là hợp số (ĐPCM).
+) Với p=3k+1
Ta có : 2p + 1 = 2(3k+1)+1 = 6k + 2 +1 = 6k + 3 (chia hết cho 3 nên là hợp số)
=>\(p\ne3k+1\)
+) Với p=3k+2
Ta có 2p +1= 2(3k+2) +1 = 6k +4 +1 = 6k + 5
Vì \(p\ne3k+1\) nên ta chộn trường hợp này
=> 4p + 1 = 4(3k+2)+1 = 12k + 8 + 1 = 12k + 9=3(4k+3) (chia hết cho 3)
Vậy 4p+1 là hợp số
=>đpcm
Vì:
Gọi n là số nguyên tố
+ Các số nguyên tố mũ 2 đều là hợp số vì nó chia hết cho n , chính nó , 2 ( vì là hợp số )và 1
+ MÀ các hợp số =2012 là số chẵn
=> Số đó chia hết cho 2 nữa
Vậy chúng ta kết luận Số đó là hợp số nhá
vì các số nguyên tố lớn hơn 3 đều là số lẻ
mà lẻ2=lẻ . lẻ=lẻ
=>lẻ + 2009=chẵn
=>P2+2009 là hợp số
tích nha
Trong bảng số nguyên tố chỉ có số 2 là số chẵn
=> Các số nguyên số lớn hơn 3 là số lẽ
Mà mọi số lẽ bình phương lên đều tận cùng là số lẽ nên
p^2 có số tận cùng là sẽ
=> p^2+2009 có chữ số tận cùng là số chẵn
Mà số chẵn thì có thêm ước là 2
=> p^2+2009 là số chình phương