Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n chia cho 7 dư 4 => n = 7k + 4 ( k là số tự nhiên)
n2 = (7k + 4)2 = 49k2 + 56k + 16 = 7(7k2 + 8k + 2) + 2 => n2 chia cho 7 dư 2
Ví dụ: p=5 thì (p+1)(p-1)=4x6=24
Vì (5+1)(5-1) (tức 24) chia hết cho 24 suy ra các số nguyên tố lớn hơn 3 thì đều chia hết cho 24(dpcm)
k đúng cho mk nha!
Có a2 - 1 = (a+1)(a-1)
Xét tích (a-1)a(a+1) chia hết cho 3
Do a là số ng tố > 3 nên a không chia hết cho 3
=> (a-1)(a+1) chia hết cho 3 (1)
Có a là số lẻ, đặt a = 2k + 1
Do vậy a2 - 1 = 4k(k+1)
Có k(k+1) luôn chia hết cho 2 => ak(k+1) chia hết cho 8 (2)
Từ (1) và (2) suy ra a2 - 1 chia hết cho 24 ( vì (3;8) =1 )
Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3 (1)
Ta có :
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24
Chứng minh: chia hết cho 24
+) Chứng minh a2 - 1 chia hết cho 3 ( đã chứng minh)
+) Chứng minh a2 - 1 chia hết cho 8
a2 - 1 = (a - 1)(a+ 1) Vì a là số nguyên tố > 3 nên a lẻ => a - 1 và a + 1 chẵn
Ta có a - 1 và a+ 1 là 2 số nguyên liên tiếp nên đặt a - 1 = 2k ; a + 1 = 2k + 2
=> a2 - 1 = 2k.(2k+2) = 4.k.(k+1)
Vì k; k+ 1 là 2 số nguyên liên tiếp nên k.(k+1) chia hết cho 2 =>a2 - 1 = 4k(k+1) chia hết cho 4.2 = 8
Vậy a2 -1 chia hết cho cả 3 và 8 nên chia hết cho 24
rong các nhân vật Sơn Tinh , Thánh Gióng , Thạch sanh em thích nhân vật nào nhứt ! Vì SAO?
Nè ti k cần mấy người dạy đời nhé tui bị trừ điểm hay xóa nick là chuyện của tui
tui cần ấy người trả lời thui ai trả lời hay và nhanh tui k cho 3 cái nhé
tối nay hạn chót òi
vì p>3 nên p có dạng p=3k+1 hoặc p=3k+2
với p=3k+1 thì p^2-1=(p+1)(p-1)=(3k+2)3k chia hết cho 3
với p=3k+2 thì p^2-1=(p+1)(p-1)=(3k+3)(3k+1) chia hết cho 3
vậy với mọi số nguyên tố p>3 thì p^2-1 chia hết cho 3 (1)
mặt khác cũng vì p>3 nên p là số lẻ =>p+1,p-1 là 2 số chẵn liên tiếp
=>trong hai sô p+1,p-1 tồn tại một số là bội của 4
=>p^2-1 chia hết cho 8 (2)
từ (1) và (2) => p^2-1 chia hết cho 24 với mọi số nguyên tố p>3