K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2021

Giả sử \(\hept{\begin{cases}a⋮p\\b⋮̸p\end{cases}}\Rightarrow\hept{\begin{cases}a^2⋮p\\b^2⋮̸p\end{cases}}\)

=> \(\hept{\begin{cases}a^2:p\text{ dư }4k;4k+1;4k+2\\b^2:p\text{ dư }4k;4k+1;4k+2\end{cases}}\)

Chọn ngẫu nhiên các cặp a2 ; b2 bất kì nhận thấy 

 a2 + b2 \(⋮̸\)p (trái với giả thiết) 

=> Điều giả sử là sai => đpcm 

Để chứng minh rằng tích ab chia hết cho 6, ta cần chứng minh rằng một trong hai số a hoặc b chia hết cho 2 và một trong hai số a hoặc b chia hết cho 3.

Giả sử a chia hết cho 2, khi đó a có thể là 2, 4, 6 hoặc 8. Ta sẽ xét từng trường hợp:

  1. Nếu a = 2, thì n = 10a + b = 20 + b. Vì n > 3, nên b > 0. Khi đó, tích ab = 2b chia hết cho 2.

  2. Nếu a = 4, thì n = 10a + b = 40 + b. Vì n > 3, nên b > -37. Khi đó, tích ab = 4b chia hết cho 2.

  3. Nếu a = 6, thì n = 10a + b = 60 + b. Vì n > 3, nên b > -57. Khi đó, tích ab = 6b chia hết cho 2.

  4. Nếu a = 8, thì n = 10a + b = 80 + b. Vì n > 3, nên b > -77. Khi đó, tích ab = 8b chia hết cho 2.

Ta đã chứng minh được rằng nếu a chia hết cho 2, thì tích ab chia hết cho 2.

Tiếp theo, ta chứng minh rằng một trong hai số a hoặc b chia hết cho 3. Ta có thể sử dụng phương pháp tương tự như trên để chứng minh điều này.

Vì tích ab chia hết cho cả 2 và 3, nên tích ab chia hết cho 6.

Vậy, ta đã chứng minh được rằng nếu n = 10a + b (a, b  N, 0 < a < 10), thì tích ab chia hết cho 6.

10 tháng 12 2023

Rảnh à?

 

5 tháng 11 2017

khó quá

27 tháng 3 2018

dễ mà cô nương

\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)

\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)

\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)

ta có 

\(a=-5-b\)

suy ra

\(a^3-b^3=19\left(-5-2b\right)\) " xong "

2, trên mạng đầy

3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)

4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm

5. trên mạng đầy

6 , trên mang jđầy 

AH
Akai Haruma
Giáo viên
25 tháng 7 2023

Lời giải:

Đặt $a^2+a+1=k$ thì:

$A=k(k+1)-12=k^2+k-12=(k-3)(k+4)=(a^2+a-2)(a^2+a+5)$

Với $a>1$, tức là $a\geq 2$ thì $a^2+a-2>2, a^2+a+5>2$ nên $A$ là hợp số (đpcm)

25 tháng 7 2023

Đề bài cm: A = (a2 +a +1)(a2 + a + 2) -12 là hợp số với (a \(\in\) N; a > 1)

                                    Giải: 

Vì a > 1; a \(\in\) N ⇒ a ≥ 2;  ⇒ A ≥ (22 + 2 + 1)( 22 + 2 + 2) - 12 = 44

Ta có: a2 + a + 2 - (a2 + a + 1) = 1 vậy

B = (a2+a 1)(a2 + a + 2) là tích của hai số tự nhiên liên tiếp nên B ⋮ 2

A = B - 12 ⋮ 2 ⇒ A ⋮ 1; 2; A ( A >2)  ⇒ A là hợp số Đpcm 

 

 

 

1 tháng 10 2016

ngu quá có thế cũng không làm được

9 tháng 11 2016

Dot eo chui noi tu lam di

nho k nha!

thang dot cung biet lam bai nay

16 tháng 2 2015

bài này thử là nhanh nhất (hi hi , mình đùa vui thôi chứ minh ko bít làm)

16 tháng 2 2015

Câu a) a chia 13 dư 2 thì a2 chia 13 dư 4

b chia 13 dư 3 thì b2 chia 13 dư 9. Vậy a2 + b2 chia hết cho 13

Câu b) tương tự nhé bạn.

6 tháng 8 2019

Vì :
a^2; b^2 là số chính phương
a,b không chia hết cho 3
Nên a^2; b^2 chia 3 dư 1
=> a^2 - b^2 chia hết cho 3                                                                     (1)
Ta có : 
(a^2 - 1) - (b^2 - 1) = (a - 1)(a + 1) - (b - 1)(b + 1) chia hết cho 8                 (2)
Vì :
(a - 1); (a + 1)(a - 1); (a + 1) là 2 số chẵn liên tiếp 
(b - 1); (b + 1)(b - 1), (b + 1) là 2 số chẵn liên tiếp
Từ (1), (2)
=> a^2 - b^2 chia hết cho 3.8
=> a^2 - b^2 chia hết cho 24

6 tháng 8 2019

cảm ơn bn