K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2020

a/

Ta có sđ ^NOB = sđ cung NB (góc ở tâm)

sđ cung NB = 1/2 sđ cung BC

=> sđ ^NOB = 1/2 sđ cung BC (1)

Ta có  sđ ^BAD = 1/2 sđ cung BC (góc nội tiếp đường tròn) (2)

Từ (1) và (2) => ^BAD = ^NOB => ON//AD (3) (hai đt bị cắt bởi 1 cát tuyến có 2 góc so le trong bằng nhau thì chúng // với nhau)

Mà ND vuông góc AD (đề bài) (4)

Từ (3) và (4) => ND vuông góc ON 

=> ND là tiếp tuyến của (O) tại N (đường thẳng đi qua 1 điểm trên đường tròn mà vuông góc với bán kính tại điểm đi qua thì dt đó là tt)

b/

Ta có sđ cung NC = 1/2 sđ cung BC

sđ cung CM = 1/2 sđ cung AC

=> sđ cung NC + sđ cung CM = sđ cung MN = 1/2 (sđ cung BC +  sđ cung AC) = (1/2).180 = 90

c/

Xét tg OMN có OM và ON không đổi = BK đường tròn => tg OMN cân tại O

sđ cung MN không đổi = 90 => MN không đổi

Từ O hạ đường thẳng vuông góc với MN tại K => OK là đường cao đồng thời là đường trung trực của tg OMN => K là trung điểm của MN và OK không đổi => Khi C thay đổi K luôn chạy trên đường tròn tâm O bán kính OK

Mà MN vuông góc với OK tại K => MN là tiếp tuyến của đường tròn tâm O bán kính OK 

O cố định nên đường tròn tâm O bán kính OK cố định

=> MN luôn tiếp xúc với đường tròn tâm O bán kính OK cố định

23 tháng 9 2020

Nguyễn Ngọc Anh Minh

câu c bạn phải tính ra OK rùi mới nói nó không đổi nha

Bài 1:Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:a) Góc AHN = ACBb) Tứ giác BMNC nội tiếp.c) Điểm I là trực tâm tam giác APQ.Bài 2:Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là...
Đọc tiếp

Bài 1:

Cho tam giác ABC vuông ở A, đường cao AH. Đường tròn tâm O đường kính AH cắt các cạnh AB, AC lần lượt tại M và N (A # M&N). Gọi I, P và Q lần lượt là trung điểm các đoạn thẳng OH, BH, và CH. Chứng minh:

a) Góc AHN = ACB

b) Tứ giác BMNC nội tiếp.

c) Điểm I là trực tâm tam giác APQ.

Bài 2:

Cho đường tròn (O;R) đường kính AB.Gọi C là điểm bất kỳ thuộc đường tròn đó (C # A&B). M, N lần lượt là điểm chính giữa của các cung nhỏ AC và BC. Các đường thẳng BN và AC cắt nhau tại I, các dây cung AN và BC cắt nhau ở P. Chứng minh:

a) Tứ giác ICPN nội tiếp. Xác định tâm K của đường tròn ngoại tiếp tứ giác đó.

b) KN là tiếp tuyến của đường tròn (O; R).

c) Chứng minh rằng khi C di động trên đường tròn (O;R) thì đường thẳng MN luôn tiếp xúc với một đường tròn cố định.

 

0
20 tháng 5 2020

Goi y cau d: Keo dai IP cat AN tai F, P se di dong tren dt dk FB co dinh

24 tháng 5 2020

cảm ơn cậu, tớ giải được rồi

8 tháng 9 2018

a, HS tự chứng minh

b, Chứng minh ∆NMC:∆NDA và ∆NME:∆NHA

c, Chứng minh ∆ANB có E là trực tâm => AE ⊥ BN mà có AKBN nên có ĐPCM

Chứng minh tứ giác EKBH nội tiếp, từ đó có  A K F ^ = A B M ^

d, Lấy P và G lần lượt là trung điểm của AC và OP

Chứng minh I thuộc đường tròn (G, GA)

a: sđ cung AC=2/3*180=120 độ

=>sđ cung AM=sđ cung MC=120/2=60 độ

sđ cung NB=sđ cung NC=60/2=30 độ

góc MIC=1/2(sđ cung AB+sđ cung MC)

=1/2(180+60)=120 độ

b: N là điểm chính giữa của cung BC

=>ON vuông góc bC

=>ON//AC
=>DN vuông góc NO

=>DN là tiếp tuyến của (O)