K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

+ Ta có: AB là tiếp tuyến của (O)(gt)

nên AB\(\perp\)OB  

=> \(\Delta\)OBA vuông tại B(đpcm)

+ Xét \(\Delta\)OAK Có A1=A2  ( 1 ) (t/c 2 tiếp tuyến cắt nhau)

OK // AB => A1 = O1 ( 2 ) (so le trong)

Từ (1, 2) => (đpcm)

b, Xét \(\Delta\)AKO cân tại K (cmt)

IA = IO (=R)

=> KI là đường trung tuyến \(\Delta\)AKO

=> KI cũng là đường cao

=> KI\(\perp\)AO  hay KM \(\perp\)IO  

Vậy KM là tiếp tuyến của (O) (đpcm)

c, MI = MB ; KI = KC ; AB = AC ( t/c 2 tiếp tuyến cắt nhau )

Xét \(\Delta\)ABO vuông tại B (cmt) 

AD định lí Py ta go ta cs : 

AO2 =AB2  + OB2

AB2 = AO2 - OB2

AB2 = 4R2 - R2

AB = \(R\sqrt{3}\)

dễ rùi tự lm tiếp 

15 tháng 12 2016

ai giúp mk vs

 

15 tháng 12 2016

đề thiếu

15 tháng 12 2015

ta có OK vuông góc với AB(giả thiết)

OB vuông góc với AB(tính chất tiếp tuyến)

do đó OK//Ob =>góc AOK=gócBAO

mà góc BAO= góc OAK (tính chất hai tiếp tuyến cắt nhau

nên góc AOK=góc OAK

hay tam giác AKO cân tại K

29 tháng 12 2023

a: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC và AO là phân giác của góc BAC và OA là phân giác của góc BOC

Ta có: \(\widehat{KAO}+\widehat{COA}=90^0\)(ΔCAO vuông tại C)

\(\widehat{KOA}+\widehat{BOA}=\widehat{BOK}=90^0\)

mà \(\widehat{COA}=\widehat{BOA}\)

nên \(\widehat{KAO}=\widehat{KOA}\)

=>ΔKAO cân tại K

b:

Xét ΔOBA vuông tại B có \(sinBAO=\dfrac{OB}{OA}=\dfrac{1}{2}\)

nên \(\widehat{BAO}=30^0\)

Ta có: ΔBOA vuông tại B

=>\(\widehat{BAO}+\widehat{BOA}=90^0\)

=>\(\widehat{BOA}=90^0-30^0=60^0\)

Xét ΔOBI có OB=OI và \(\widehat{BOI}=60^0\)

nên ΔOBI đều

=>OI=OB=1/2OA=R

=>I là trung điểm của OA

ΔKAO cân tại K

mà KI là trung tuyến

nên KI vuông góc với OI

=>KI là tiếp tuyến của (O)

18 tháng 12 2021

b: Xét (O) có

AB là tiếp tuyến

AC là tiếp tuyến

Do đó: AB=AC

hay A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

nên O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra OA⊥BC

11 tháng 12 2022

a: Ta có: góc KOA+góc BOA=90 độ

góc KAO+góc COA=90 độ

mà góc BOA=góc COA

nên góc KOA=góc KAO

=>ΔKOA cân tại K

b: Xét ΔOBA vuông tại B có cos BOA=OB/OA=1/2

nên góc BOA=60 độ

=>ΔOBI đều

=>OI=1/2OA

=>I là trung điểm của OA

ΔKOA cân tại K

mà KI là đường trung tuyến

nen KI là đường cao

=>OI vuông góc với KM

=>KM là tiếp tuyến của (O)