Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ΔKFD cân tại K
=>góc BKF=2*góc BDF
CE là phân giác của góc BCF
nên góc BCF=2*góc BCA
mà góc BDA=góc BCA
nên góc BKF=góc BCF
=>BCKF nội tiếp
c, Do KC // AE
\(\Rightarrow\)CM // AE
Ta có DF = DA = DE ( \(\Delta DAE.cân.ở.D\) )
\(\Rightarrow\Delta ADF\) cân ở D mà DC là đường cao ứng với đáy
\(\Rightarrow\) AC = CF
Mà CM // AE
\(\Rightarrow\) CM là đường TB
\(\Rightarrow ME=MF\)
\(\Delta AED\) cân ở D. BD là đường cao
\(\Rightarrow\) BD là trung tuyến
\(\Rightarrow\) BA = BE
mà ME = MF
\(\Rightarrow\) BM là đường TB ứng vớ cạnh đáy AF
\(\Rightarrow\) BM // AF ; BM // AC
Vì \(\stackrel\frown{BA}=\stackrel\frown{BC}\Rightarrow BO\perp AC\)
Mà BM // AC
\(\Rightarrow BO\perp BM\)
\(\Rightarrow\) BM là tiếp tuyến đường tròn tâm O đường kính AD
góc BAC=góc BKH
=>góc BKH=góc BFC
=>HK//CF
Xét tứ giác PBQF có
góc PBQ=góc BQF=góc BPF=90 độ
=>PBQF là hình chữ nhật
=>góc BQP=góc FBQ=góc FBD=1/2*sđ cung FD
HK//CF
HK vuông góc AD
=>FC vuông góc AD
=>N là trung điểm của CF
=>góc BQP=1/2*sđ cung CD=góc CBD
=>BC//PQ
Gọi I là giao của PQ và CF
=>I là trung điểm của BF
BC//PQ
I là trung điểm của BF
=>PQ đi qua trung điểm của CF
=>AD,FC,PQ đồng quy