K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 5 2018

A B O C D M N H K E

a) Xét \(\Delta\)NKD và \(\Delta\)MKC: ^NKD = ^MKC (Đối đỉnh); ^DNK = ^CMK (Cùng chắn cung CD)

=> \(\Delta\)NKD ~ \(\Delta\)MKC (g.g) (đpcm).

b) Ta thấy: N là điểm chính giữa của cung AD => \(\Delta\)AND cân tại N => ^NAD = ^NDA

Tứ giác CAND nội tiếp đường tròn (O) => ^NAD = ^NCD; ^NDA = ^NCA.

Mà ^NAD=^NDA (cmt) => ^NCD = ^NCA => CN là phân giác ^ACD.

Tương tự ta chứng minh được: DM là phân giác ^ADC

Do DM giao CN tại K nên K là tâm đường tròn nội tiếp \(\Delta\)CAD => AK là phân giác ^CAD

Hay AE là phân giác ^CAD => ^CAE = ^DAE.

Xét tứ giác ACED nội tiếp (O) => ^CAE = ^CDE; ^DAE = ^DCE

=> ^CDE = ^DCE => \(\Delta\)DEC cân tại E => EC=ED. Mà CD là dây cung của (O)

=> OE vuông góc CD (đpcm).

c) Ta thấy ^CKM là góc ngoài của \(\Delta\)CKD => ^CKM = ^KCD + ^KDC = 1/2 (^ACD + ^ADC) (1)

Ta có: ^MCK = ^ACM + ^ACK. Mà ^ACM = ^ADM (Cùng chắn cung AM) => ^MCK = ^ADM + ^ACK

=> ^MCK = 1/2(^ADC + ^ACD) (2)

Từ (1) và (2) => ^CKM = ^MCK => \(\Delta\)CMK cân tại M => MC=MK=MA

=> M nằm trên trung trực của AK

Lập luận tương tự: NA=NK => N nằm trên trung trực của AK

=>  MN là đường trung trực của AK . Lại có H thuộc MN

=> ^NKH = ^NAH. Mà ^NAH = ^NMC (=^NAC) nên ^NKH = ^NMC.

Xét \(\Delta\)NHK và \(\Delta\)NCM: ^NKH = ^NMC; ^MNC chung => \(\Delta\)NHK ~ \(\Delta\)NCM (g.g)

\(\Delta\)AHK cân tại H => ^HAK = ^HKA. Do AK là phân giác ^CAD => ^HAK = ^KAD

=> ^HKA = ^KAD. Vì 2 góc này so le trg nên HK // AD (đpcm).

d) Nhận xét: \(\Delta\)AMK có AM=KM (cmt)

=> \(\Delta\)AMK là tam giác đều khi ^AMK=600 hay ^AMD=600

Mà ^AMD = ^ACD (Cùng chắn cung AD) => Để \(\Delta\)AMK đều khi ^ACD=600 

Vậy 2 điểm C và D di động trên đường tròn (O) sao cho ^ACD=600 thì \(\Delta\)AMK là tam giác đều.

NV
20 tháng 1

Do \(OC=OD=CD=R\Rightarrow\Delta OCD\) là tam giác đều

\(\Rightarrow\widehat{COD}=60^0\)

Mà \(\widehat{CAD}=\dfrac{1}{2}\widehat{COD}\) (góc nt và góc ở tâm cùng chắn CD)

\(\Rightarrow\widehat{CAD}=30^0\)

AB là đường kính nên \(\widehat{ADB}\) là góc nt chắn nửa đường tròn \(\Rightarrow\widehat{ADB}=90^0\)

\(\Rightarrow\widehat{ADP}=90^0\Rightarrow\widehat{APB}=180^0-\left(90^0+30^0\right)=60^0\)

Tương tự ta có \(\widehat{ACB}\) là góc nt chắn nửa đường tròn

\(\Rightarrow\widehat{ACB}=90^0\Rightarrow\widehat{BCP}=90^0\)

\(\Rightarrow\widehat{CQD}=360^0-\left(\widehat{APB}+\widehat{ADP}+\widehat{ACB}\right)=360^0-\left(60^0+90^0+90^0\right)=120^0\)

\(\Rightarrow\widehat{AQB}=\widehat{CQD}=120^0\) (2 góc đối đỉnh)

NV
20 tháng 1

loading...

a: sđ cung AC=2/3*180=120 độ

=>sđ cung AM=sđ cung MC=120/2=60 độ

sđ cung NB=sđ cung NC=60/2=30 độ

góc MIC=1/2(sđ cung AB+sđ cung MC)

=1/2(180+60)=120 độ

b: N là điểm chính giữa của cung BC

=>ON vuông góc bC

=>ON//AC
=>DN vuông góc NO

=>DN là tiếp tuyến của (O)