Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Học sinh tự chứng minh
b, DADB vuông tại D, có đường cao DH Þ A D 2 = AH.AB
c, E A C ^ = E D C ^ = 1 2 s đ E C ⏜ ; E A C ^ = K H C ^ (Tứ giác AKCH nội tiếp)
=> E D C ^ = K H C ^ => DF//HK (H là trung điểm DC nên K là trung điểm FC) => Đpcm
Câu này khó thât đấy nhưng mình giải ra rồi nek
Hình bạn tự vẽ nha
Ta có CH vuông góc AD
Và BD vuông góc AD( góc D nội tiếp chắn nữa đường tròn )
=> CH // BD
=> Góc HCA = Góc DBA ( đồng vị)
Lại có Góc AND = Góc ABD ( cùng chắn cũng AD)
Trong tứ giác AECN có
Góc AND= góc ABD
Vì 2 góc bằng nhau cùng nhìn một cạnh
=> Bốn điểm A,E,N,C thuộc một đường tròn
Hay tứ giác AECN nội tiếp
a) Tứ giác MNKC nội tiếp do bốn đỉnh đều thuộc đường tròn đường kính KC.
b) Ta có \(\Delta IMK\sim\Delta INC(g.g)\) nên \(IM.IC=IN.IK\).
c) D là trực tâm của tam giác ICK nên \(\widehat{IEK}=90^o\) , mà IK là đường kính của (O) nên E thuộc (O).
Các tứ giác NDEK, NDMI nội tiếp nên \(\widehat{MND}=\widehat{MID}=90^o-\widehat{ICK}=\widehat{DKE}=\widehat{DNE}\). Suy ra NC là phân giác của góc MNE.
d) Theo phương tích ta có \(DM.DK=DA.DB\). Áp dụng bđt AM - GM:
\(DM.DK=DA.DB\le\dfrac{\left(DA+DB\right)^2}{4}=\dfrac{AB^2}{4}\) không đổi.
Đẳng thức xảy ra khi và chỉ khi DA = DB, tức \(M\equiv I\).
Vậy...