Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác BCDE có \(\widehat{BCD}+\widehat{BED}=180^0\)
nên BCDE là tứ giác nội tiếp
b: Xét tứ giác AECF có \(\widehat{ACF}=\widehat{FEA}=90^0\)
nên AECF là tứ giác nội tiếp
=>\(\widehat{AFE}=\widehat{ACE}\)
a: góc ACB=1/2*sđ cung AB=90 độ
góc DCB+góc DEB=180 độ
=>DEBC nội tiếp
góc AEF=góc ACF=90 độ
=>AECF nội tiếp
b: AECF nội tiếp
=>góc AFE=góc ACE
a: góc ACB=1/2*sđ cungAB=90 độ
góc DCB+góc DEB=180 độ
=>DEBC nội tiếp
góc AEF=góc ACF=90 độ
=>AECF nội tiếp
b:AECF nội tiếp
=>góc AFE=góc ACE
VẼ HÌNH (chú thích : c là cùng / g là gốc /)
Ta có :cBC=cCD+cBD
:cAD=cCD+cAC
mà :cAD=cBC(gt)
Do do : cBD=cAD (1)
Ta có:gocCAB la goc noi tiep chan cBC (2)
:gocDBA la goc noi tiep chan cAD(3)
Từ(1),(2) va (3) suy ra :gocCAB=gocDBA
=> Tứ giác ACDB là hình thang cân(vì sd 2 gốc ở đay=nhau)
B1, a, Xét tứ giác AEHF có: góc AFH = 90o ( góc nội tiếp chắn nửa đường tròn)
góc AEH = 90o (góc nội tiếp chắn nửa đường tròn )
Góc CAB = 90o ( tam giác ABC vuông tại A)
=> tứ giác AEHF là hcn(đpcm)
b, do AEHF là hcn => cũng là tứ giác nội tiếp => góc AEF = góc AHF ( hia góc nội tiếp cùng chắn cung AF)
mà góc AHF = góc ACB ( cùng phụ với góc FHC)
=> góc AEF = góc ACB => theo góc ngoài tứ giác thì tứ giác BEFC là tứ giác nội tiếp (đpcm)
c,gọi M là giao điểm của AI và EF
ta có:góc AEF = góc ACB (c.m.t) (1)
do tam giác ABC vuông tại A và có I là trung điểm của cạng huyền CB => CBI=IB=IA
hay tam giác IAB cân tại I => góc MAE = góc ABC (2)
mà góc ACB + góc ABC + góc BAC = 180o (tổng 3 góc trong một tam giác)
=> ACB + góc ABC = 90o (3)
từ (1) (2) và (3) => góc AEF + góc MAE = 90o
=> góc AME = 90o (theo tổng 3 góc trong một tam giác)
hay AI uông góc với EF (đpcm)