K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2021

a. xét tứ giác OBMD có

∠DBO=90 ( tiếp tuyến By)

∠OMD=90 (tiếp tuyến tại M)

⇒∠DBO+∠OMD=90+90=180

⇒tứ giác OBMD nội tiếp

b.ΔOBF cân tại O do OB=OF=R

⇒∠B1=∠F1 (1)

có ∠E1=∠B(cùng phụ ∠EOB) (2)

từ (1);(2) ⇒∠F1=∠E1 (cùng nhìn OB)

⇒OFEB nội tiếp

⇒∠OFE=∠OBE=90

⇒EF⊥OF

⇒EF là tiếp tuyến của (O)

c. xét ΔKFO và ΔKEB có

∠FKO=∠EKB=90

∠E1=∠F1

⇒ΔKFO ∼ ΔKEB (g.g)

\(\dfrac{KO}{KB}=\dfrac{KF}{KE}\)⇒KO.KE=KF.KB

a: Xét (O) có

OM là bán kính

EF vuông góc OM tại M

Do đó: EF là tiếp tuyến của (O)

b: Xét (O) có

EM.EA là tiếp tuyến

nên EM=EA
Xét(O) có

FM,FB là tiếp tuyến

nên FM=FB

EF=EM+MF

=>EF=EA+FB