Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Xét (O) có
CM,CA là các tiếp tuyến
nên CM=CA và OC là phân giác của góc MOA(1)
mà OM=OA
nên OC là đường trung trực của MA
=>OC vuông góc với MA tại I
Xét (O) có
DM,DB là các tiếp tuyến
nên DM=DB và OD là phân giác của góc MOB(2)
mà OM=OB
nên OD là trung trực của BM
=>OD vuông góc với BM
Từ (1) và (2) suy ra góc COD=1/2*180=90 độ
b: AC*BD=MC*MD=MO^2=R^2
a: Xét (O) có
CM,CA là các tiếp tuyến
Do đó: CM=CA và OC là phân giác của \(\widehat{MOA}\)
Xét (O) có
DM,DB là các tiếp tuyến
Do đó: DM=DB và OD là phân giác của góc MOB
Ta có: CD=CM+MD
mà CM=CA và DM=DB
nên CD=CA+DB
b: OC là phân giác của góc MOA
=>\(\widehat{MOA}=2\cdot\widehat{MOC}\)
OD là phân giác của góc MOB
=>\(\widehat{MOB}=2\cdot\widehat{MOD}\)
Ta có: \(\widehat{MOA}+\widehat{MOB}=180^0\)(hai góc kề bù)
=>\(2\cdot\left(\widehat{MOC}+\widehat{MOD}\right)=180^0\)
=>\(2\cdot\widehat{COD}=180^0\)
=>\(\widehat{COD}=90^0\)
c: Gọi N là trung điểm của CD
Vì ΔOCD vuông tại O
nên ΔOCD nội tiếp đường tròn đường kính CD
=>ΔCOD nội tiếp (N)
Xét hình thang ABDC có
O,N lần lượt là trung điểm của AB,CD
=>ON là đường trung bình của hình thang ABDC
=>ON//AC//BD
Ta có: ON//AC
AC\(\perp\)AB
Do đó: ON\(\perp\)AB
Xét (N) có
NO là bán kính
AB\(\perp\)NO tại O
Do đó: AB là tiếp tuyến của (N)
=>AB là tiếp tuyến của đường tròn đường kính CD
a: Xét tứ giác HAOM có
\(\widehat{HAO}+\widehat{HMO}=90^0+90^0=180^0\)
=>HAOM là tứ giác nội tiếp
b: Xét (O) có
HA,HM là các tiếp tuyến
Do đó: HA=HM và OH là phân giác của góc MOA
Xét (O) có
KM,KB là các tiếp tuyến
Do đó: KM=KB và OK là phân giác của góc MOB
Ta có: HM+MK=HK(M nằm giữa H và K)
mà HM=HA và KM=KB
nên HA+KB=HK
c: Ta có: HA=HM
=>H nằm trên đường trung trực của AM(1)
Ta có: OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra HO là đường trung trực của AM
=>HO\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó; ΔAMB vuông tại M
=>AM\(\perp\)MB
Ta có: HO\(\perp\)AM
AM\(\perp\)MB
Do đó: HO//MB
=>\(\widehat{AOH}=\widehat{ABM}\)
Xét ΔAHO vuông tại A và ΔMAB vuông tại M có
\(\widehat{AOH}=\widehat{MBA}\)
Do đó: ΔAHO đồng dạng với ΔMAB
=>\(\dfrac{HO}{AB}=\dfrac{AO}{MB}\)
=>\(HO\cdot MB=AO\cdot AB=2R^2\)
Vao nhe http://files.hoconline-vn.webnode.vn/200000034-0b01c0bfd5/MOT%20SO%20BAI%20TAP%20ON%20THI%20VAO%20LOP%2010.swf
Vào thử đi : http://files.hoconline-vn.webnode.vn/200000034-0b01c0bfd5/MOT%20SO%20BAI%20TAP%20ON%20THI%20VAO%20LOP%2010.swf
**** cho mình nhé
a: Xét (O) có
CM là tiếp tuyến
CA là tiếp tuyến
Do đó: OC là tia phân giác của góc MOA(1)
Xét (O) có
DM là tiếp tuyến
DB là tiếp tuyến
DO đó; OD là tia phân giác của góc MOB(2)
Từ (1) và (2) suy ra \(\widehat{DOC}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)
hay ΔODC vuông tại O
b: Xét ΔODC vuông tại O có OM là đường cao
nên \(MC\cdot MD=OM^2\)