Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác ACMO có
\(\widehat{CAO}+\widehat{CMO}=180^0\)
Do đó: ACMO là tứ giác nội tiếp
b:
Xét tứ giác DMOB có
\(\widehat{DMO}+\widehat{DBO}=180^0\)
Do đó: DMOB là tứ giác nội tiếp
Suy ra: \(\widehat{ODM}=\widehat{OBM}\)
mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)
nên \(\widehat{CAM}=\widehat{ODM}\)
a: góc OAC+góc OMC=180 độ
=>OACM nội tiếp
b: OACM nội tiếp
=>góc CAM=góc COM=góc DOM=góc ODM
Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.
Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA
Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK
Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM
= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA
=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A
=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)
Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)
Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const
Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi
=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi
Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).
a) Nối B với M
Xét tam giác OBM,có:
OB=OM(Cùng là bán kính)
=>Tam giác OBM cân tại O
=>Góc OMB=Góc OBM (2gocs tương ứng)
Ta có:By tiếp tuyến với đg tròn (O) tại B
=>Góc OBy=90o(t/c...)
Hay góc OBC=90o (C∈By)
CD tiếp tuyến với đg tròn (O)
=>Góc OMD=góc OMC=90o(t/c...)
Ta có:OBM+MBD=OBD
OMB+BMD=OMD
MàOBM=OMB (cmt)
OBD=OMD (=90o)
=>MBD=BMD
Xét tam giác BMD, có:
MBD=BMD (cmt)
=>Tam giác BMD cân tại D
=>BD=MD (2 cạnh tương ứng)
Nối A với M
Xét tam giác AOM,có:
OA=OM (cùng là R)
=>TAm giác OAM cân tại O
=>OAM=OMA(2 góc tương ứng)
Ta có :Ax tiếp tuyến với đg tròn (O) tại A
=>OAx=90o
HayOAC=90o (C∈Ax)
Ta có :OAM+MAC=OAC
OMA+AMC=OMC
Mà:OAM=OMA(cmt)
OAC=OMC(=90o)
=>MAC=AMC
Xét tam giác ACM,có:
MAC=AMC(cmt)
=>Tam giác ACM cân tại C
=>AC=CM(2 cạnh tương ứng)
Ta có:CM+MD=CD
Mà:CM=AC(cmt)
MD=BD(cmt)
=>AC+BD=CD
b)Gọi E là gđ của AM và CO
Ta có : AC cắt CM tại C
Mà AC và CM là tiếp tuyến của đg tròn (O)
=>AC=MC;CO là p/g của ACM(...)
Vì CO là p/g của ACM(cmt)
=>ACO=MCO
Hay ACI=MCI
Xét tam giác ACI và tam giác MCI,có:
AC=MC(cmt)
ACO=MCO(cmt)
CI là cạnh chung
=>Tam giác ACI=Tam giác MCI(c.g.c)
=>AIC=MIC(2 góc tương ứng);AI=MI
Ta có:AIC+MIC=180o(2 góc bù nhau)
Mà AIC=MIC(cmt)
=>AIC=90o
=>OC⊥AM tại I