K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ACMO có 

\(\widehat{CAO}+\widehat{CMO}=180^0\)

Do đó: ACMO là tứ giác nội tiếp

b:

Xét tứ giác DMOB có 

\(\widehat{DMO}+\widehat{DBO}=180^0\)

Do đó: DMOB là tứ giác nội tiếp

Suy ra: \(\widehat{ODM}=\widehat{OBM}\)

mà \(\widehat{OBM}=\widehat{CAM}\left(=\dfrac{1}{2}sđ\stackrel\frown{AM}\right)\)

nên \(\widehat{CAM}=\widehat{ODM}\)

a: góc OAC+góc OMC=180 độ

=>OACM nội tiếp

b: OACM nội tiếp

=>góc CAM=góc COM=góc DOM=góc ODM

 

14 tháng 7 2019

A B O C D M E F K I N L

Gọi BE cắt đường tròn (O) tại điểm thứ hai là N. Gọi L là hình chiếu của I trên ME.

Dễ thấy ^BNA = 900. Suy ra \(\Delta\)BNA ~ \(\Delta\)BCE (g.g) => BN.BE = BC.BA 

Cũng dễ có \(\Delta\)BMA ~ \(\Delta\)BCK (g.g) => BC.BA = BM.BK. Do đó BN.BE = BM.BK

Suy ra tứ giác KENM nội tiếp. Từ đây ta có biến đổi góc: ^KNA = 3600 - ^ANM - ^KNM

= (1800 - ^ANM) + (1800 - ^KNM) = ^ABM + (1800 - ^AEM) = ^EFM + ^MEF = ^KFA

=> 4 điểm A,K,N,F cùng thuộc một đường tròn. Nói cách khác, đường tròn (I) cắt (O) tại N khác A

=> OI vuông góc AN. Mà AN cũng vuông góc BE nên BE // OI (1)

Mặt khác dễ có E là trung điểm dây KF của (I) => IE vuông góc KF => IE // AB (2)

Từ (1);(2) suy ra BOIE là hình bình hành => IE = OB = const

Ta lại có EM,AB cố định => Góc hợp bởi EM và AB không đổi. Vì IE // AB nên ^IEL không đổi

=> Sin^IEL = const hay \(\frac{IL}{IE}=const\). Mà IE không đổi (cmt) nên IL cũng không đổi

Vậy I di động trên đường thẳng cố định song song với ME, cách ME một khoảng không đổi (đpcm).

15 tháng 11 2021

a) Nối B với M

Xét tam giác OBM,có:

        OB=OM(Cùng là bán kính)

=>Tam giác OBM cân tại O

=>Góc OMB=Góc OBM (2gocs tương ứng)

Ta có:By tiếp tuyến với đg tròn (O) tại B

=>Góc OBy=90o(t/c...)

Hay góc OBC=90o (C∈By)

  CD tiếp tuyến với đg tròn (O)

=>Góc OMD=góc OMC=90o(t/c...)

Ta có:OBM+MBD=OBD

          OMB+BMD=OMD

   MàOBM=OMB (cmt)

         OBD=OMD (=90o)

  =>MBD=BMD

Xét tam giác BMD, có:

    MBD=BMD (cmt)

=>Tam giác BMD cân tại D

=>BD=MD (2 cạnh tương ứng)

Nối A với M

Xét tam giác AOM,có:

 OA=OM (cùng là R)

=>TAm giác OAM cân tại O

=>OAM=OMA(2 góc tương ứng)

Ta có :Ax tiếp tuyến với đg tròn (O) tại A

=>OAx=90o

HayOAC=90o (C∈Ax)

Ta có :OAM+MAC=OAC

           OMA+AMC=OMC

    Mà:OAM=OMA(cmt)

          OAC=OMC(=90o)

=>MAC=AMC

Xét tam giác ACM,có:

 MAC=AMC(cmt)

=>Tam giác ACM cân tại C

=>AC=CM(2 cạnh tương ứng)

Ta có:CM+MD=CD

   Mà:CM=AC(cmt)

         MD=BD(cmt)

=>AC+BD=CD

b)Gọi E là gđ của AM và CO

Ta có : AC cắt CM tại C

Mà AC và CM là tiếp tuyến của đg tròn (O)

=>AC=MC;CO là p/g của ACM(...)

Vì CO là p/g của ACM(cmt)

=>ACO=MCO

Hay ACI=MCI

Xét tam giác ACI và tam giác MCI,có:

           AC=MC(cmt)

         ACO=MCO(cmt)

         CI là cạnh chung

 =>Tam giác ACI=Tam giác MCI(c.g.c)

=>AIC=MIC(2 góc tương ứng);AI=MI

Ta có:AIC+MIC=180o(2 góc bù nhau)

   Mà AIC=MIC(cmt)

     =>AIC=90o

=>OC⊥AM tại I

 

 

13 tháng 4 2019

trả lời

bn vẽ hình ra đi

mik nhác vẽ