K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2020

A H O B N C M D x y

Ax \(\perp\) AB

By \(\perp\) AB

Suy ra: Ax // By hay AC // BD

Trong tam giác BND, ta có AC // BD

Suy ra:  \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét)     (1)

Theo tính chất hai tiếp tuyến cắt nhau, ta có:

AC = CM và BD = DM      (2)

Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)

Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)

Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)

Suy ra: MN \(\perp\) AB

b. Trong tam giác ACD, ta có: MN // AC

Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét)     (3)

Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)

Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét)     (4)

Trong tam giác BDN, ta có: AC // BD

Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)

\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)

Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN

25 tháng 2 2023

 

25 tháng 2 2023

https://www.youtube.com/@user-gg3oc7il3c/about

 

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
15 tháng 11 2021

a) Nối B với M

Xét tam giác OBM,có:

        OB=OM(Cùng là bán kính)

=>Tam giác OBM cân tại O

=>Góc OMB=Góc OBM (2gocs tương ứng)

Ta có:By tiếp tuyến với đg tròn (O) tại B

=>Góc OBy=90o(t/c...)

Hay góc OBC=90o (C∈By)

  CD tiếp tuyến với đg tròn (O)

=>Góc OMD=góc OMC=90o(t/c...)

Ta có:OBM+MBD=OBD

          OMB+BMD=OMD

   MàOBM=OMB (cmt)

         OBD=OMD (=90o)

  =>MBD=BMD

Xét tam giác BMD, có:

    MBD=BMD (cmt)

=>Tam giác BMD cân tại D

=>BD=MD (2 cạnh tương ứng)

Nối A với M

Xét tam giác AOM,có:

 OA=OM (cùng là R)

=>TAm giác OAM cân tại O

=>OAM=OMA(2 góc tương ứng)

Ta có :Ax tiếp tuyến với đg tròn (O) tại A

=>OAx=90o

HayOAC=90o (C∈Ax)

Ta có :OAM+MAC=OAC

           OMA+AMC=OMC

    Mà:OAM=OMA(cmt)

          OAC=OMC(=90o)

=>MAC=AMC

Xét tam giác ACM,có:

 MAC=AMC(cmt)

=>Tam giác ACM cân tại C

=>AC=CM(2 cạnh tương ứng)

Ta có:CM+MD=CD

   Mà:CM=AC(cmt)

         MD=BD(cmt)

=>AC+BD=CD

b)Gọi E là gđ của AM và CO

Ta có : AC cắt CM tại C

Mà AC và CM là tiếp tuyến của đg tròn (O)

=>AC=MC;CO là p/g của ACM(...)

Vì CO là p/g của ACM(cmt)

=>ACO=MCO

Hay ACI=MCI

Xét tam giác ACI và tam giác MCI,có:

           AC=MC(cmt)

         ACO=MCO(cmt)

         CI là cạnh chung

 =>Tam giác ACI=Tam giác MCI(c.g.c)

=>AIC=MIC(2 góc tương ứng);AI=MI

Ta có:AIC+MIC=180o(2 góc bù nhau)

   Mà AIC=MIC(cmt)

     =>AIC=90o

=>OC⊥AM tại I