Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ax \(\perp\) AB
By \(\perp\) AB
Suy ra: Ax // By hay AC // BD
Trong tam giác BND, ta có AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BD}{AC}\)(hệ quả định lí Ta-lét) (1)
Theo tính chất hai tiếp tuyến cắt nhau, ta có:
AC = CM và BD = DM (2)
Từ (1) và (2) suy ra: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Trong tam giác ACD, ta có: \(\frac{ND}{NA}=\frac{MD}{MC}\)
Suy ra: MN // AC (theo định lí đảo định lí Ta-lét)
Mà: AC \(\perp\) AB (vì Ax \(\perp\) AB)
Suy ra: MN \(\perp\) AB
b. Trong tam giác ACD, ta có: MN // AC
Suy ra: \(\frac{MN}{AC}=\frac{DN}{DA}\) (hệ quả định lí Ta-lét) (3)
Trong tam giác ABC, ta có: MH // AC (vì M, N, H thẳng hàng)
Suy ra: \(\frac{HN}{AC}=\frac{BN}{BC}\) (hệ quả định lí Ta-lét) (4)
Trong tam giác BDN, ta có: AC // BD
Suy ra: \(\frac{ND}{NA}=\frac{BN}{NC}\) (hệ quả định lí Ta-lét)
\(\Rightarrow\frac{ND}{\left(DN+NA\right)}=\frac{BN}{\left(BN+NC\right)}\Leftrightarrow\frac{ND}{DA}=\frac{BN}{BC}\left(5\right)\)
Từ (3), (4) và (5) suy ra: MN/AC = HN/AC => MN = HN
a) Nối B với M
Xét tam giác OBM,có:
OB=OM(Cùng là bán kính)
=>Tam giác OBM cân tại O
=>Góc OMB=Góc OBM (2gocs tương ứng)
Ta có:By tiếp tuyến với đg tròn (O) tại B
=>Góc OBy=90o(t/c...)
Hay góc OBC=90o (C∈By)
CD tiếp tuyến với đg tròn (O)
=>Góc OMD=góc OMC=90o(t/c...)
Ta có:OBM+MBD=OBD
OMB+BMD=OMD
MàOBM=OMB (cmt)
OBD=OMD (=90o)
=>MBD=BMD
Xét tam giác BMD, có:
MBD=BMD (cmt)
=>Tam giác BMD cân tại D
=>BD=MD (2 cạnh tương ứng)
Nối A với M
Xét tam giác AOM,có:
OA=OM (cùng là R)
=>TAm giác OAM cân tại O
=>OAM=OMA(2 góc tương ứng)
Ta có :Ax tiếp tuyến với đg tròn (O) tại A
=>OAx=90o
HayOAC=90o (C∈Ax)
Ta có :OAM+MAC=OAC
OMA+AMC=OMC
Mà:OAM=OMA(cmt)
OAC=OMC(=90o)
=>MAC=AMC
Xét tam giác ACM,có:
MAC=AMC(cmt)
=>Tam giác ACM cân tại C
=>AC=CM(2 cạnh tương ứng)
Ta có:CM+MD=CD
Mà:CM=AC(cmt)
MD=BD(cmt)
=>AC+BD=CD
b)Gọi E là gđ của AM và CO
Ta có : AC cắt CM tại C
Mà AC và CM là tiếp tuyến của đg tròn (O)
=>AC=MC;CO là p/g của ACM(...)
Vì CO là p/g của ACM(cmt)
=>ACO=MCO
Hay ACI=MCI
Xét tam giác ACI và tam giác MCI,có:
AC=MC(cmt)
ACO=MCO(cmt)
CI là cạnh chung
=>Tam giác ACI=Tam giác MCI(c.g.c)
=>AIC=MIC(2 góc tương ứng);AI=MI
Ta có:AIC+MIC=180o(2 góc bù nhau)
Mà AIC=MIC(cmt)
=>AIC=90o
=>OC⊥AM tại I