Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Vì CA = CM ( tc tiếp tuyến cắt nhau )
OA = OM = R
=> OC là đường trung trực đoạn AM
=> OC vuông AM
^AMB = 900 ( góc nội tiếp chắn nửa đường tròn )
=> AM vuông MB (1)
Ta có : DM = DB ( tc tiếp tuyến cắt nhau )
OM = OB = R
=> OD là đường trung trực đoạn MB
=> OD vuông MB (2)
Từ (1) ; (2) => OD // AM
b, OD giao MB = {T}
OC giao AM = {U}
Xét tứ giác OUMT có ^OUM = ^UMT = ^MTO = 900
=> tứ giác OUMT là hcn => ^UOT = 900
Vì CD là tiếp tuyến (O) với M là tiếp điểm => ^OMD = 900
Mặt khác : BD = DM ( tc tiếp tuyến cắt nhau )
CM = AC ( tc tiếp tuyến cắt nhau )
Xét tam giác COD vuông tại O, đường cao OM
Ta có : \(OM^2=CM.MD\)hay \(OM^2=AC.BD\)=> R^2 = AC.BD
c, Gọi I là trung điểm CD
O là trung điểm AB
khi đó OI là đường trung bình hình thang BDAC
=> OI // AC mà AC vuông AB ( tc tiếp tuyến ) => OI vuông AB
Xét tam giác COD vuông tại O, I là trung điểm => OI = IC = ID = R
Vậy AB là tiếp tuyến đường tròn (I;CD/2)
a.Vì CM,CA là tiếp tuyến của (O)
\(\Rightarrow OC\) là phân giác \(\widehat{AOM},CM=CA\)
Tương tự \(OD\) là phân giác \(\widehat{BOM},DM=DB\)
\(\Rightarrow AC+BD=CM+DM=CD\)
b . Từ câu a )
\(\Rightarrow\widehat{COD}=\widehat{COM}+\widehat{MOD}=\frac{1}{2}\widehat{AOM}+\frac{1}{2}\widehat{MOB}=\frac{1}{2}\widehat{AOB}=90^0\)
c . Ta có :
\(OC\perp OD,OM\perp CD\Rightarrow CM.DM=OM^2\)
Mà \(AC=CM,DM=DB,OM=R\Rightarrow AC.BD=R^2=\frac{AB^2}{4}\)
d.Vì CA,CM là tiếp tuyến của (O)
\(\Rightarrow OC\perp AM\)
Mà \(AM\perp BM\) vì AB là đường kính của (O)
=> oc//bm
e . Lấy I là trung điểm CD vì \(\widehat{COD}=90^0\) \(\Rightarrow\left(I,IO\right)\)là đường tròn đường kính CD
Mà O là trung điểm AB,AC //DB \(\left(\perp AB\right)\)
=> IO là đường trung bình hình thang ◊ABDC
=> IO//AC \(\Rightarrow IO\perp AB\)
=> AB là tiếp tuyến của (I,IO)
Hay AB là tiếp tuyến của đường tròn đường kính CD
f ) Ta có : \(AC//BD,CM=CA,DM=DA\)
\(\Rightarrow\frac{NA}{ND}=\frac{AC}{BD}=\frac{CM}{MD}\)
\(\Rightarrow MN//AC\Rightarrow MN\perp AB\left(AC\perp AB\right)\)
g ) .Để ABDC có chu vi nhỏ nhất
\(\Rightarrow AB+BD+AC+CD\) nhỏ nhất
\(\Rightarrow AB+CD+CD\)nhỏ nhất
\(\Rightarrow AB+2CD\)nhỏ nhất
\(\Rightarrow CD\) nhỏ nhất
Mà \(CD\ge AB\) vì ABCD là hình thang vuông tại A,B
Dấu " = " xảy ra khi CD//AB => M nằm giữa A và B
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DB là tiếp tuyến có B là tiếp điểm
DM là tiếp tuyến có M là tiếp điểm
Do đó: DB=DM
Ta có: MC+MD=DC
mà MC=CA
và DM=DB
nên AC+DB=CD
CHO NỬA ĐƯỜNG TRÒN (O;R) ĐƯỜNG KÍNH AB. TỪ A VÀ B KẺ HAI TIẾP TUYẾN AX VÀ BY VỚI NỬA ĐƯỜNG TRÒN . QUA ĐIỂM M BẤT KÌ THUỘC NỬA ĐƯỜNG TRÒN KẺ TIẾP TUYẾN THỨ BA CẮT AX ,BY LẦN LƯỢT TẠI E VÀ F . NỐI AM CẮT OE TẠI P, NỐI BM CẮT OF TẠI Q. HẠ MH VUÔNG GÓC VỚI AB TẠI HA, CHỨNG MINH…