K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 2 2017

A M B P P C N D Q E R H K

Giải

Gọi R là trung điểm BE. Trong \(\Delta\)BCD có P, N là trung điểm của BC và DC nên PN là đường trung bình của tam giác

\(\Rightarrow\) PN // BD và PN = \(\frac{BD}{2}\)

Tương tự RQ là đường trung bình của \(\Delta\)BED

nên RQ // BD và RQ = \(\frac{BD}{2}\)

\(\Rightarrow\) PMQR là hình bình hành. Có K là trung điểm của đường chéo PQ thì K là trung điểm của RN (hình bình hành có hai đường chéo cắt nhau tai trung điểm mỗi đường)

Trong \(\Delta\)MNR có HK là đường trung bình

\(\Rightarrow\) HK // MR và HK = \(\frac{MR}{2}\)(1)

Trong \(\Delta\)ABE có MR là đường trung bình

\(\Rightarrow\) MR // AE và MR = \(\frac{AE}{2}\) (2)

Từ (1) và (2) => HK // AE và HK = \(\frac{AE}{4}\)

1 tháng 4 2019

A B C H E D K

a) Xét tam giác AEB và tam giác HDB có:

\(\widehat{HDB}=\widehat{AEB}=90^o\)

\(\widehat{B}\)chung

=> \(\Delta EBA~\Delta DBH\)

b) Chứng minh tương tự như trên với hai tam giác AEC và HKC ta suy ra:

\(\frac{CA}{HC}=\frac{AE}{HK}\Rightarrow CA.HK=AE.HC\)(1)

c) Ta có: ​\(\Delta EBA~\Delta DBH\Rightarrow\frac{AE}{DH}=\frac{AB}{BH}\Rightarrow AB.DH=AE.BH\)(2)

Mà HC=HB (3)

Từ (1) (2), (3)=> CA.HK=AB.DH => CA/BA=DH/KH