Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trả lời:
a, Gọi O là giao điểm 2 đường chéo của hình chữ nhật ABCD
=> O là trung điểm của BD và AC
Xét tam giác ACE có:
O là trung điểm của AC
M là trung điểm của AE ( gt )
=> OM là đường trung bình của tam giác ACE
=> OM // CE
hay BD // CE
=> ^BDC = ^ECK ( 2 góc đồng vị ) (1)
Vì O là trung điểm của BD và AC
=> OD = BD/2 và OC = AC/2
Mà BD = AC ( ABCD là hình chữ nhật )
=> OD = OC
=> tam giác DOC cân tại O
=> ^BDC = ^ACD (tc) (2)
Xét tứ giác HEKC có:
^EHC = 90o
^HCK = 90o
^EKC = 90o
=> tứ giác HEKC là hình chữ nhật ( dh1)
Gọi I là giao điểm 2 đường chéo của hình chữ nhật HEKC
=> I là trung điểm của CE và HK
=> IC = CE/2 và IK = HK/2
Mà CE = HK ( HEKC là hình chữ nhật )
=> IC = IK
=> tam giác ICK cân tại I
=> ^ECK = ^IKC (tc) (3)
Từ (1) (2) và (3) => ^ACD = ^IKC
Mà 2 góc này ở vị trí đồng vị
nên AC // HK ( đpcm )
b, Xét tam giác ACE có:
I là trung điểm của CE
M là trung điểm của AE (gt)
=> IM là đường trung bình của tam giác ACE
=> IM // AC
Mà HK // AC ( cm ở ý a ) và H, I, K thẳng hàng
nên M, H, K thẳng hàng ( đpcm )
k nha đúng
a) Xét tam giác AEB và tam giác HDB có:
\(\widehat{HDB}=\widehat{AEB}=90^o\)
\(\widehat{B}\)chung
=> \(\Delta EBA~\Delta DBH\)
b) Chứng minh tương tự như trên với hai tam giác AEC và HKC ta suy ra:
\(\frac{CA}{HC}=\frac{AE}{HK}\Rightarrow CA.HK=AE.HC\)(1)
c) Ta có: \(\Delta EBA~\Delta DBH\Rightarrow\frac{AE}{DH}=\frac{AB}{BH}\Rightarrow AB.DH=AE.BH\)(2)
Mà HC=HB (3)
Từ (1) (2), (3)=> CA.HK=AB.DH => CA/BA=DH/KH
Giải
Gọi R là trung điểm BE. Trong \(\Delta\)BCD có P, N là trung điểm của BC và DC nên PN là đường trung bình của tam giác
\(\Rightarrow\) PN // BD và PN = \(\frac{BD}{2}\)
Tương tự RQ là đường trung bình của \(\Delta\)BED
nên RQ // BD và RQ = \(\frac{BD}{2}\)
\(\Rightarrow\) PMQR là hình bình hành. Có K là trung điểm của đường chéo PQ thì K là trung điểm của RN (hình bình hành có hai đường chéo cắt nhau tai trung điểm mỗi đường)
Trong \(\Delta\)MNR có HK là đường trung bình
\(\Rightarrow\) HK // MR và HK = \(\frac{MR}{2}\)(1)
Trong \(\Delta\)ABE có MR là đường trung bình
\(\Rightarrow\) MR // AE và MR = \(\frac{AE}{2}\) (2)
Từ (1) và (2) => HK // AE và HK = \(\frac{AE}{4}\)