K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2020

Đặt \(T=3\cdot5\cdot7\cdot.....\cdot49\)

\(\Rightarrow A\cdot T=\frac{T}{2}+\frac{T}{3}+\frac{T}{4}+....+\frac{T}{50}\)

\(2^4\cdot B\cdot T=\frac{2^4T}{2}+\frac{2^4T}{3}+\frac{2^4T}{4}+....+\frac{2^4T}{50}\left(1\right)\)

Tất cả các số hạng của (1) đều là stn ngoại trừ \(\frac{2^4T}{5}\)

\(\Rightarrow VP\notinℕ\Rightarrow VT\notinℕ\)

Mà \(2^4\inℕ\Rightarrow T\inℕ\)

\(\Rightarrow A\notinℕ\left(đpcm\right)\)

3/10=3/9*10

3/11=3/10*11

3/12=3/11*12

3/13=3/12*13

3/14=3/13*14

suy ra 3/10+3/3/11+....+3/14 nhỏ hơn 3/9*10+....+3/13*14

suy ra 3/9*10 + 3/10*11+....+3/13*14

=1/9-1/10+....+1/13-1/14

=1/9-1/14

tự viết kết quả nhé

21 tháng 3 2019

gọi ƯCLN (16n+3,12n+2) là d

16n+3 chia hết cho d => 48n+9 chia hết cho d 

12n+2 chia hết cho d => 48n + 8 chia hết cho d

=> 48n+9 -  48n + 8  chia hết cho d

=> 1  chia hết cho d

=> d\(\in\){-1;1}

=> \(\frac{16n+3}{12n+2}\)tối giản

21 tháng 3 2019

Để A là phân số tối giãn thì \(16n+3⋮12n+2\)(đặt phân số đó là A nhé)

\(=>16n+3⋮12n+2\)

\(=>48n+9⋮48n+8\)

\(=>48n+9-48n-8⋮48n+8\)

\(=>4⋮12n+2\)

15 tháng 7 2019

\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)

15 tháng 7 2019

A = 1 + 3 + 5 + 7 + ... + 2n + 1

   = \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)

   = \(\left(n+1\right).\left(n+1\right)\)

   = \(\left(n+1\right)^2\)

=> A là số chính phương (đpcm)

b) \(2+4+6+...+2n\)

\(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)

\(n.\left(n+1\right)\)

\(n^2+n\)

\(\Rightarrow\)B không là số chính phương

24 tháng 11 2017

b không chia hết cho 3 nên ta xét 2 trường hợp:

TH1: b chia 3 dư 1 nên b = 3k + 1

\(\Rightarrow\left(3k+1\right)^2-1=9k^2+6k+1-1=3k\left(3k+3\right)\)

Vì \(3⋮3\)

Do đó \(3k\left(3k+2\right)⋮3\Rightarrow\left(3k+1\right)^2-1⋮3\)

TH2: b chia 3 dư 2 nên b = 3k + 2

\(\Rightarrow\left(3k+2\right)^2-1=9k^2+12k+4-1=3k\left(3k+4\right)\)

vì \(3⋮3\)

Do đó \(3k\left(3k+4\right)⋮3\Rightarrow\left(3k+2\right)^2-1⋮3\)

Vậy với b là một số tự nhiên không chia hết cho 3 thì \(b^2-1⋮3\)

24 tháng 11 2017

b là số tự nhiên không chia hết cho 3 => b có dạng 3k+1 hoặc 3k+2 (k thuộc N*)

Th1: b=3k+1=> b^2-1=9.k^2+6k+1-1=9.k^2+6k chia hết cho 3

Th2: b=3k+2 => b^2-1=9.k^2+12k+4-1=9.k^2+12k+3 chia hết cho 3

Vậy với mọi b là số tự nhiên không chia hết cho 3 thì b^2-1 chia hết cho 3

5 tháng 4 2020

Q = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n.\left(n+1\right)}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}\)

\(=1-\frac{1}{n+1}\)

Vì n là số nguyên khác 0; - 1

=> \(\frac{1}{n+1}\)không là số nguyên

=> \(Q=1-\frac{1}{n+1}\)không là số nguyên

5 tháng 4 2020

Nguyễn Linh Chi :) trường con lại bắt trình bày rõ ràng thế này ; nếu bạn Nguyen duc anh  cũng cần cách  này ;

\(\frac{1}{1.2}=\frac{2-1}{1.2}=\frac{2}{2}-\frac{1}{2}=1-\frac{1}{2}\)

\(\frac{1}{2.3}=\frac{3-2}{2.3}=\frac{3}{2.3}-\frac{2}{2.3}=\frac{1}{2}-\frac{1}{3}\)

\(\frac{1}{3.4}=\frac{4-3}{3.4}=\frac{4}{3.4}-\frac{3}{3.4}=\frac{1}{3}-\frac{1}{4}\)

.....

\(\frac{1}{n\left(n+1\right)}=\frac{\left(n+1\right)-n}{n\left(n+1\right)}=\frac{\left(n+1\right)}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}=\frac{1}{n}-\frac{1}{n+1}\)

rồi bắt đầu làm như cô Nguyễn Linh Chi