K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1...
Đọc tiếp

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5.

9
25 tháng 10 2021

:V lớp 6 mới đúng

25 tháng 10 2021

ahihi e ko bt 

Bài toán 1. So sánh: 200920 và 2009200910Bài toán 2. Tính tỉ số , biết:Bài toán 3. Tìm x; y biết:a. . 25 – y2 = 8( x – 2009)b. x3 y = x y3  + 1997c. x + y + 9 = xy – 7.Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.Bài toán 5. Chứng minh rằng:Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 -...
Đọc tiếp

Bài toán 1. So sánh: 200920 và 2009200910

Bài toán 2. Tính tỉ số \frac{A}{B}, biết:

Bài tập nâng cao Toán 7

Bài toán 3. Tìm x; y biết:

a. . 25 – y2 = 8( x – 2009)

b. xy = x y3  + 1997

c. x + y + 9 = xy – 7.

Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.

Bài toán 5. Chứng minh rằng:

Bài tập nâng cao Toán 7

Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x)2005

Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.

Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.

Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.

Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).

Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.

Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5

6
27 tháng 10 2021

Bài 11: 

Ta có: \(n^3-n^2+2n+7⋮n^2+1\)

\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)

\(\Leftrightarrow n^2-64⋮n^2+1\)

\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)

\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)

hay \(n\in\left\{0;-2;2;8;-8\right\}\)

27 tháng 10 2021

cái này mà lớp 1 hả cj xu???

18 tháng 3 2021

3-1=2 nhé

3 tháng 4 2021

? đây mà là toán lớp 1

17 tháng 8 2018

vãi cả lớp 1

17 tháng 8 2018

1) a) Phương trình có x1 và x2 trái dấu

\(\Leftrightarrow2m-4< 0\Leftrightarrow2m< 4\Leftrightarrow m< 2\)

b) Phương trình có x1 và x2 cùng dương

\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4=0\\2m>0\\2m-4>0\end{cases}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\left(BĐTđúng\right)\\m>0\\m>2\end{cases}\Leftrightarrow}m>2}\)

c) Phương trình có x1 và x2 cùng âm

\(\Leftrightarrow\hept{\begin{cases}m^2-2m+4>0\\2m< 0\\2m-4>0\end{cases}}\Leftrightarrow\hept{\begin{cases}\left(m-1\right)^2+3>0\\m< 0\\m>2\end{cases}\Leftrightarrow0>m>2}\)

P/s: không chắc -.-

25 tháng 10 2021

Bài 1:

Ta có: \(8=7+x=x+1\)

\(B=x^{15}-8x^{14}+8x^{13}-...-8x^2+8x-5\)

\(\Rightarrow B=x^{15}-\left(x+1\right)x^{14}+\left(x+1\right)x^{13}-...-\left(x+1\right)x^2+\left(x+1\right)x-5\)

\(\Rightarrow B=x^{15}-x^{15}-x^{14}+x^{14}-x^{13}-...-x^3-x^2+x^2+x-5\)

\(\Rightarrow B=x-5\)

\(\Rightarrow B=7-5\)

\(\Rightarrow B=2\)

 

25 tháng 10 2021

gọi 3 số tự nhiên liên tiếp là \(a,a+1,a+2\)

ta có: \(a\left(a+1\right)=\left(a+1\right)\left(a+2\right)-50\\ \Leftrightarrow a^2+a=a^2+3a+2-50\\ \Leftrightarrow-2a=-48\\ \Leftrightarrow a=24\)

         \(\Rightarrow a+1=25;a+2=26\)

Vậy 3 số tự nhiên liên tiếp là \(24;25;26\)

 

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0Câu 16. Tìm giá trị lớn nhất của biểu thức:Câu 17. So sánh các số thực sau (không dùng máy tính):Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3Câu 19. Giải phương trình: .Câu...
Đọc tiếp

Câu 14. Cho biểu thức P = x2 + xy + y2 – 3(x + y) + 3. Chứng minh rằng giá trị nhỏ nhất của P bằng 0.

Câu 15. Chứng minh rằng không có giá trị nào của x, y, z thỏa mãn đẳng thức sau:

x2 + 4y2 + z2 – 2a + 8y – 6z + 15 = 0

Câu 16. Tìm giá trị lớn nhất của biểu thức:

Câu 17. So sánh các số thực sau (không dùng máy tính):

Câu 18. Hãy viết một số hữu tỉ và một số vô tỉ lớn hơn √2 nhưng nhỏ hơn √3

Câu 19. Giải phương trình: .

Câu 20. Tìm giá trị lớn nhất của biểu thức A = x2y với các điều kiện x, y > 0 và 2x + xy = 4.

Câu 21. Cho .

Hãy so sánh S và .

Câu 22. Chứng minh rằng: Nếu số tự nhiên a không phải là số chính phương thì √a là số vô tỉ.

Câu 23. Cho các số x và y cùng dấu. Chứng minh rằng:

Câu 24. Chứng minh rằng các số sau là số vô tỉ:

Câu 25. Có hai số vô tỉ dương nào mà tổng là số hữu tỉ không?

Câu 26. Cho các số x và y khác 0. Chứng minh rằng:

Câu 27. Cho các số x, y, z dương. Chứng minh rằng:

Câu 28. Chứng minh rằng tổng của một số hữu tỉ với một số vô tỉ là một số vô tỉ.

Câu 29. Chứng minh các bất đẳng thức:

a) (a + b)2 ≤ 2(a2 + b2)

b) (a + b + c)2 ≤ 3(a2 + b2 + c2)

c) (a1 + a2 + ….. + an)2 ≤ n(a12 + a22 + ….. + an2).

Câu 30. Cho a3 + b3 = 2. Chứng minh rằng a + b ≤ 2.

3
12 tháng 10 2021

Câu 29:

a: \(\left(a+b\right)^2\le2\left(a^2+b^2\right)\)

\(\Leftrightarrow-a^2+2ab-b^2\le0\)

\(\Leftrightarrow-\left(a-b\right)^2\le0\)(luôn đúng)

3 tháng 12 2021

Hả lơp 1 ????????

7 tháng 6 2016

mình quên có tất cả 37 hcn

7 tháng 6 2016

hoặc rất nhiều

16 tháng 2 2017

h mik nhe

22 tháng 8 2019

a) Ta có: (2x2 - 5x + 3)(x2 - 4x + 3) = 0

=> \(\orbr{\begin{cases}2x^2-5x+3=0\\x^2-4x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x^2-2x-3x+3=0\\x^2-3x-x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x\left(x-1\right)-3\left(x-1\right)=0\\x\left(x-3\right)-\left(x-3\right)=0\end{cases}}\)

=> \(\orbr{\begin{cases}\left(2x-3\right)\left(x-1\right)=0\\\left(x-1\right)\left(x-3\right)=0\end{cases}}\)

=> x = 3/2 hoặc x = 1

hoặc : x = 1 hoặc x = 3

=> Tập hợp A = {1; 3/2; 3}

b) Ta có: (x2 - 10x + 21)(x3 - x) = 0

=> (x2 - 7x - 3x + 21)x(x2 - 1) = 0

=> [x(x - 7) - 3(x - 7)x(x2 - 1) = 0

=> (x - 3)(x - 7)x(x - 1)(x+ 1) = 0

=> x - 3 = 0 hoặc x - 7 = 0 hoặc x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

=> x = 3 hoặc x = 7 hoặc x = 0 hoặc x = 1 hoặc x = -1

=> Tập hợp B = {-1; 0; 1; 3; 7}

17 tháng 8 2022

mày điên à đây là mini world à  đây không phải toán lớp 1 con ngu