K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )

Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1

 Đề kiểm tra Toán 6 | Đề thi Toán 6 là phân số tối giản.

14 tháng 1 2018

gọi d là ƯCLN ( 21n + 4 ; 14n + 3 ) 

\(\Rightarrow\)21n + 4 \(⋮\)d  \(\Rightarrow\)2 . ( 21n + 4 ) \(⋮\)\(\Rightarrow\)42n + 8 \(⋮\)d ( 1 )

\(\Rightarrow\)14n + 3 \(⋮\)\(\Rightarrow\)3 . ( 14n + 3 ) \(⋮\)\(\Rightarrow\)42n + 9 \(⋮\)d ( 2 )

Từ ( 1 ) và ( 2 )  \(\Rightarrow\)( 42n + 9 ) - ( 42n + 8 ) = 1 \(⋮\)d

\(\Rightarrow\)d = 1 mà ƯCLN ( 21n + 4 ; 14n + 3 ) = d nên phân số \(\frac{21n+4}{14n+3}\)là phân số tối giản

DD
8 tháng 11 2021

Đặt \(\left(14n+3,21n+5\right)=d\).

Suy ra 

\(\hept{\begin{cases}14n+3⋮d\\21n+5⋮d\end{cases}}\Rightarrow2\left(21n+5\right)-3\left(14n+3\right)=1⋮d\Rightarrow d=1\).

Do đó ta có đpcm. 

23 tháng 4 2023

Khó dữ zậy

5 tháng 5 2019

   Gọi d = ƯCLN ( 14n + 3 , 21n + 5 ) 

Xét hiệu :

   \(\left(21n+5\right)-\left(14n+3\right)⋮d\)

   \(2\left(21n+5\right)-3\left(14+3\right)⋮d\)

   \(42n+10-42n-9⋮d\)

                     \(10-9⋮d\)

                               \(1⋮d\)

\(\Rightarrow d\inƯ\left(1\right)\)

\(\RightarrowƯ\left(1\right)=1\Rightarrow d=1\)

                                         Vậy....

                                                       #Louis

5 tháng 5 2019
To cung giong ban

Bài 1 : Đặt \(d=Ư\left(n+1;2n+3\right)\)

Từ đó \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}\Leftrightarrow}}2n+3-\left(2n+2\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy mọi phân số dạng \(\frac{n+1}{2n+3}\left(n\inℕ\right)\) đều là phân số tối giản

Bài 2 : Đặt \(d=Ư\left(2n+3;3n+5\right)\)

Từ đó \(\hept{\begin{cases}2n+3⋮d\\3n+5⋮d\end{cases}\Leftrightarrow\hept{\begin{cases}6n+9⋮d\\6n+10⋮d\end{cases}\Leftrightarrow}6n+10-\left(6n-9\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1}\)

Vậy mọi phân số dạng \(\frac{2n+3}{3n+5}\left(n\inℕ\right)\) đều là phân số tối giản.

10 tháng 5 2021

Gọi ƯCLN(3n+5,8n+13) là d (d\(\in\)Z*)

\(\Rightarrow\hept{\begin{cases}3n+5\\8n+13\end{cases}}\)\(⋮\)\(\Rightarrow\hept{\begin{cases}13\left(3n+5\right)\\5\left(8n+13\right)\end{cases}}\)\(⋮\)d

\(\Rightarrow\hept{\begin{cases}39n+65\\40n+65\end{cases}}\)\(⋮\)d

\(\Rightarrow\)-1\(⋮\)d

\(\Rightarrow\)1\(⋮\)d

\(\Rightarrow\)d=1

\(\Rightarrow\)đpcm

7 tháng 3 2016

Để 3n/3n+1 là p/s tối giản thì 3n,3n+1 là 2 số nguyên tố cùng nhau

g/s(3n,3n+1) = d

=>3n+1 : d và 3n : d (nhớ 3 dấu chấm dùm mình nhé chỗ chia )

=>3n+1 - 3n :d

=>1:d=>d =1

=>3n và 3n+1 là 2 số n tố cùng nhau

vậy 3n/3n+1 là p/s tối giản 

7 tháng 3 2016

cho mk hỏi gs là gì

27 tháng 11 2017

Đặt d = ƯCLN( 14n + 3, 21n + 5 ) ( d ∈ N* )

Ta có: 14n + 3 ⋮ d và 21n + 5 ⋮ d

⇒ 3( 14n + 3 ) ⋮ d và 2( 21n + 5 ) ⋮ d ⇒ 42n + 9 ⋮ d và 42n + 10 ⋮ d

⇒ ( 42n + 9 ) – ( 42n + 10 ) ⋮ d ⇒ 1 ⋮ d . Do đó d = 1  

Vậy 14 n + 3 21 n + 5  là phân số tối giản

12 tháng 1 2018