K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TB
6
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
NC
0
TN
0
CM
17 tháng 1 2019
Ta có:
a) ( 3 n + 1 ) 2 - 25 = 3(3n - 4)(n + 2) chia hết cho 3;
b) ( 4 n + 1 ) 2 - 9 = 8(2n - 1)(n +1) chia hết cho 8.
PT
1
CM
27 tháng 4 2017
Hướng dẫn giải:
Gọi d là ƯCLN của 3n - 2 và 4n - 3
⇒ (3n - 2)⋮ d và (4n - 3)⋮ d
⇒ [3(4n - 3) - 4(3n - 2)] = -1⋮ d
⇒ d = 1 hoặc d = -1
Vậy phân thức đã cho tối giản với ∀n ∈ N
Vì n là số tự nhiên lớn hơn 1 nên sảy ra hai trường hợp
Th1: n là số chắn => n4 + 4n là , hợp số.
Th2: n số lẻ => n = 2k + 1
Thì n4 + 4n = n4 + 42k + 1 = (n2 + 22k + 1)2 - n2.22k + 2 = (n2 + 22k + 1 + n.2k + 1 ) (n2 + 22k + 1 - n.2k + 1 )
Ta có : n2 + 22k + 1 \(\ge2.n.2\frac{2k+1}{2}=n.2^{k+1}\)
Mà n là số lẻ và lờn hơn 1 nên n2 + 22k + 1 - n.2k + 1 > 1
Vậy n4 + 4n là hợp số
Có 2 trường hợp:
Th 1: \(n\)chẵn suy ra đương nhiên \(n^4+n^4\)là hợp số
Th 2: \(n\)lẻ suy ra \(n=2k+1\)
Suy ra:
\(n^4+n^4=n^4+n^{2n}=n^4+2.2^n+2^{2n}-2.2^n=\left(n^2+2^n\right)^2-2.2^{2k+1}=\left(n^2+2^n\right)^2-\left(2^k+1\right)^2\)
\(=\left(n^2+2^n-2^{k+1}\right)\left(n^2+2^n+2^{k+1}\right)\)
Suy ra là tích của 2 số nên nó là hợp số