Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Lực phục hồi đổi chiều tại VTCB. Lực đàn hồi đổi chiều tại vị trí lò xo không biến dạng.
Lần thứ hai: khi đưa vật về vị trí lò xo không biến dạng rồi thả nhẹ thì quãng đường vật chuyển động đến lúc lực phục hồi đổi chiều (VTCB) bằng A, tương ứng với thời gian vật chuyển động bằng T/4
Lần thứ nhất: khi nâng vật lên rồi thả nhẹ vật chuyển động trên vị trí lực đàn hồi triệt tiêu tức là vật đã chuyển động từ vị trí biên (có ly độ x = -A) đến vị trí có ly độ x = - ∆ l 0 (chọn chiều dương Ox hướng xuống)
Do thời gian
Vậy tỉ số gia tốc vật và gia tốc trọng trường ngay khi thả lần thứ nhất là
.
Cả hai lần thả, hệ lò xo đều dao động điều hòa với chu kỳ T (s)
+) Xét lần thả thứ 2, ta thấy khoảng thời gian y là khoảng mà vật chuyển động từ biên -A đền vị trí có ly độ 0, suy ra \(y=\frac{T}{4}\)
+) Xét lần thả thứ nhất,
\(\frac{x}{y}=\frac{2}{3}\Rightarrow x=\frac{T}{6}\)
\(\Rightarrow\) x là khoảng thời gian vật di chuyển từ ly độ -A đền ly độ -A/2
Theo đề bài \(\Rightarrow\) vị trí -A/2 là vị trí lực đàn hồi triệt tiêu
\(\Rightarrow\frac{A}{2}=\Delta l_0=\frac{mg}{k}\Rightarrow A=\frac{2mg}{k}\)
Vậy tỷ số cần tìm là \(\frac{a_{max}}{g}=\frac{A\omega^2}{g}=\frac{\frac{2mg}{k}.\frac{k}{m}}{g}=2\)
\(\Delta l=5cm\)
Vị trí có lực đẩy đàn hồi lần thứ nhất chính là vị trí lò xo bắt đầu bị nén. Tức là qua vị trí -\(x=-\Delta l\).
M -10 10 N -5 ^
Vị trí ban đầu t = 0 tại M ứng với góc (-90 độ).
Vị trí lực đầy đàn hồi lần thứ nhất tại N x = -5 cm.
=> \(\varphi=\pi+\frac{\pi}{6}=\frac{7\pi}{6}\Rightarrow t=\frac{\varphi}{\omega}=\frac{7\pi}{6.10\pi}=\frac{7}{60}s.\)
sai rồi bạn ơi, lực đẩy max là lúc vật ở vị trí -A nhé, denta phi sẽ là 3π/2, và t sẽ là 3/20s
Thời gian quả cầu đi từ vị trí cao nhất (x = -A) đến vị trí thấp nhất (x = A) chính là \(\frac{T}{2} = 0,2 => T = 0,4s.\)
Lực đàn hồi của lò xo khi lò xo ở vị trí thấp nhất chính là \(F_{dhmax} = k(A+\Delta l)\)
\(\frac{F_{max}}{P} = \frac{k(A+\Delta l)}{mg} = \frac{kA+k\Delta l }{mg } = 1+\frac{kA}{mg} =\frac{7}{4}\) (do \(k\Delta l = mg\))
=> \(A = \frac{3g}{4}\frac{m}{k} = \frac{3g}{4}.\frac{T^2}{4\pi^2} =0,03m = 3cm.\)
Chọn D
+ Lần 2: vật đi từ biên về VTCB (lực phục hồi đổi chiều) y = T/4. Do
+ Lần 1: vật đi từ biên về Δlo (lực đàn hồi = 0) là T/6 => A = 2Δlo =>