Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right).\left[\left(2n-1\right)^2-1^2\right]\)
\(=\left(2n-1\right).\left(2n-1-1\right).\left(2n-1+1\right)\)
\(=\left(2n-2\right).\left(2n-1\right).2n\)
\(=2.\left(n-1\right).\left(2n-1\right).2n\)
Với \(n\)lẻ
\(\Rightarrow n-1\)chẵn
\(\Rightarrow n-1⋮2\)
\(\Rightarrow2.\left(n-1\right)⋮4\)
\(\Rightarrow2.\left(n-1\right).2n⋮8\)
\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)
Với n chẵn
\(\Rightarrow n⋮2\)
\(\Rightarrow2n⋮4\)
\(\Rightarrow2.\left(n-1\right).2n⋮8\)
\(\Rightarrow2.\left(n-1\right).\left(2n-1\right).2n⋮8\)(1)
Từ (1) và (2)
\(\Rightarrow\left(2n-1\right)^3-\left(2n-1\right)⋮8\forall x\inℤ\)
đpcm
gọi UCLN(n^3+2n;n^4+3n^2+1)=d
=> n^3+2n chia hết cho d
và n^4 +3n^2+1 chia hết cho d (1)
=> n^4+2n^2 chia hết cho d(2)
từ (1)(2)=> n^2+1 chia hết cho d
=> (n^2+1)^2 chia hết cho d <=> n^4 +2n^2+1 chia hết cho d (3)
từ (2)(3)=> 1 chia hết cho d
=> d=1 hoặc -1
=> đpcm
Ta có :
\(n\left(n+1\right)\left(n+2\right)\left(n+3\right)=\left[n\left(n+3\right)\right].\left[\left(n+1\right)\left(n+2\right)\right]=\left(n^2+3n\right)\left(n^2+3n+2\right)\)
ko là số cp
1. a là số tự nhiên chia 5 dư 1
=> a = 5k + 1 ( k thuộc N )
b là số tự nhiên chia 5 dư 4
=> b = 5k + 4 ( k thuộc N )
Ta có ( b - a )( b + a ) = b2 - a2
= ( 5k + 4 )2 - ( 5k + 1 )2
= 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )
= 25k2 + 40k + 16 - 25k2 - 10k - 1
= 30k + 15
= 15( 2k + 1 ) chia hết cho 5 ( đpcm )
2. 2n2( n + 1 ) - 2n( n2 + n - 3 )
= 2n3 + 2n2 - 2n3 - 2n2 + 6n
= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )
3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1
= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1
= 3n - 2n2 - 4n2 + 3n + 1 - 1
= -6n2 + 6n
= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )