K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2022

(5; 6)

NV
3 tháng 1 2022

\(\overrightarrow{AB}=\left(5;6\right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Gọi \(M\left( {a;b} \right) \Rightarrow \overrightarrow {AM}  = \left( {a - 2;b - 3} \right)\)

Tọa độ vecto \(\overrightarrow {BC}  = \left( {4; - 2} \right)\)

Để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC}  \Leftrightarrow \left\{ \begin{array}{l}a - 2 = 4\\b - 3 =  - 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 6\\b = 1\end{array} \right.\)

Vậy để \(\overrightarrow {AM{\rm{ }}}  = {\rm{ }}\overrightarrow {BC} \) thì tọa độ điểm M là:\(M\left( {6;1} \right)\)

b) Gọi \(N\left( {x,y} \right) \Rightarrow \overrightarrow {NC}  = \left( {3 - x, - 1 - y} \right)\)và \(\overrightarrow {AN}  = \left( {x - 2,y - 3} \right)\)

Do N là trung điểm AC nên \(\overrightarrow {AN}  = \overrightarrow {NC}  \Leftrightarrow \left\{ \begin{array}{l}x - 2 = 3 - x\\y - 3 =  - 1 - y\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = \frac{5}{2}\\y = 1\end{array} \right.\) . Vậy \(N\left( {\frac{5}{2},1} \right)\)

Ta có: \(\overrightarrow {BN} {\rm{ }} = \left( {  \frac{7}{2};0} \right)\) và \(\overrightarrow {NM}  = \left( {\frac{{ 7}}{2};0} \right)\). Vậy \(\overrightarrow {BN} {\rm{ }} = {\rm{ }}\overrightarrow {NM} \)

16 tháng 12 2020

\(\overrightarrow{AB}=\left(-1;11\right)\);\(\overrightarrow{AC}=\left(-7;3\right)\)

\(\overrightarrow{AB}.\overrightarrow{AC}=\left(-1;11\right).\left(-7;3\right)=\left(-1\right).\left(-7\right)+11.3=40\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Dựa vào hình vẽ, ta có: \({x_A} = 2,{y_A} = 2\) và \({x_B} = 4,{y_B} = 3\)

b) Để \(\overrightarrow {OM} {\rm{ }} = {\rm{ }}\overrightarrow {AB} \) thì điểm M phải có tọa độ: \(M\left( {1;2} \right)\). Do đó, toạn độ của vectơ\(\overrightarrow {AB} \)là \(\overrightarrow {AB}  = \left( {2;1} \right)\)

c) Do \(\overrightarrow {AB}  = \left( {2;1} \right)\) nên \(a = 2,b = 1\)

Ta có: \({x_B} - {x_A} = 4 - 2 = 2\), \({y_B} - {y_A} = 3 - 2 = 1\)

Vậy \({x_B} - {x_A} = a\) và \({y_B} - {y_A} = b\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Để xác định điểm A, ta làm như sau (Hình 8):

• Qua O kẻ đường thẳng d song song với giá của vectơ \(\overrightarrow u \).

• Lấy điểm A trên đường thẳng d sao cho hai vectơ \(\overrightarrow {OA} \), \(\overrightarrow u \) cùng hướng và độ dài đoạn thẳng OA bằng độ dài vectơ \(\overrightarrow u \).

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có vectơ \(\overrightarrow {OG} \) theo ba vectơ \(\overrightarrow {OA} \) , \(\overrightarrow {OB} \)và \(\overrightarrow {OC} \) là: \(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\)

b) Do tọa độ ba điểm A , B và C là: \(A\left( {{x_A},{y_A}} \right),B\left( {{x_B},{y_B}} \right),C\left( {{x_C},{y_C}} \right)\) nên ta có:\(\overrightarrow {OA}  = \left( {{x_A},{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B},{y_B}} \right),\overrightarrow {OC}  = \left( {{x_C},{y_C}} \right)\)

Vậy\(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right) = \frac{1}{3}\left( {{x_A} + {x_B} + {x_C};{y_A} + {y_B} + {y_C}} \right) = \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

Tọa độ điểm G chính là tọa độ của vectơ \(\overrightarrow {OG} \) nên tọa độ G  là \(G\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Do \(\overrightarrow {OA} {\rm{ }} = {\rm{ }}\overrightarrow u \) nên tọa độ vecto \(\overrightarrow {OA}  = \left( {a;b} \right)\). Vậy tọa độ điểm A là: \(A\left( {a;b} \right)\)

b) TỌa độ điểm H là \(H\left( {a;0} \right)\) nên \(\overrightarrow {OH}  = \left( {a;0} \right)\). Do đó, \(\overrightarrow {OH}  = a\overrightarrow i \)

c) TỌa độ điểm K là \(K\left( {0;b} \right)\) nên \(\overrightarrow {OK}  = \left( {0;b} \right)\). Do đó, \(\overrightarrow {OK}  = b\overrightarrow j \)

d) Ta có: \({\rm{ }}\overrightarrow u  = \overrightarrow {OA} {\rm{ }} = \overrightarrow {OH}  + \overrightarrow {OK}  = a\overrightarrow i  + b\overrightarrow j \) (đpcm)

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

a) Ta có:  \({\overrightarrow i ^2} = {\left| {\overrightarrow i } \right|^2} = 1;{\overrightarrow j ^2} = {\left| {\overrightarrow j } \right|^2};\overrightarrow i .\overrightarrow j  = 0\)(vì \(\overrightarrow i  \bot \overrightarrow j \) )

b) Ta có: \(\overrightarrow u .\overrightarrow v  = \left( {{x_1}\overrightarrow i  + {y_1}\overrightarrow j } \right).\left( {{x_2}\overrightarrow i  + {y_2}\overrightarrow j } \right) = {x_1}{x_2}.{\overrightarrow i ^2} + {x_1}{y_2}.\left( {\overrightarrow i .\overrightarrow j } \right) + {y_1}{x_2}.\left( {\overrightarrow j .\overrightarrow i } \right) + {y_1}{y_2}.{\overrightarrow j ^2} = {x_1}{x_2} + {y_1}{y_2}\)