K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2019

a) Ta có:\(M=2+2^2+2^3+...+2^{100}\)

        \(2M=2^2+2^3+2^4+...+2^{101}\)

\(2M-M=2^{101}-2\)

Hay \(M=2^{101}-2\)

b) Ta có: \(M=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)

                   \(=2.\left(1+2\right)+2^3.\left(1+2\right)+...+2^{99}.\left(1+2\right)\)

                   \(=2.3+2^3.3+...+2^{99}.3\) 

                   \(=3.\left(2+2^3+...+2^{99}\right)\)

                    \(\Rightarrow M⋮3\)

Hok tốt nha!!!

12 tháng 10 2019

a)   M=2+22+23+...+2100

    2M=2.(2+22+23+...+2100)

    2M=2.2+2.22+2.23+...+2100

    2M=22+23+24+...+2101

2M-M=(22+23+24+...+2101) - (2+22+23+...+2100)

      M=2101- 2

19 tháng 12 2021

Bài 1: 

a: \(\Leftrightarrow x-1\in\left\{1;-1;3;-3\right\}\)

hay \(x\in\left\{2;0;4;-2\right\}\)

a: 450 chia hết cho x

396 chia hết cho x

=>\(x\inƯC\left(450;396\right)\)

=>\(x\inƯ\left(18\right)\)(Vì ƯCLN(450;396)=18)

mà x>12

nên x=18

b: 285+x chia hết cho x

=>285 chia hết cho x(1)

306-x chia hết cho x

=>306 chia hết cho x(2)

Từ (1), (2) suy ra \(x\inƯC\left(285;306\right)\)

=>\(x\inƯ\left(3\right)\)

mà x>=3

nên x=3

c: x chia 8;12;16 đều dư 1

=>x-1 chia hết cho 8;12;16

=>\(x-1\in B\left(48\right)\)

mà 40<x<100

nên x-1=48 hoặc x-1=96

=>x=49 hoặc x=97

 

Bài 3: 

a) Ta có: \(C=2+2^2+2^3+...+2^{99}+2^{100}\)

\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)+...+\left(2^{96}+2^{97}+2^{98}+2^{99}+2^{100}\right)\)

\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)+...+2^{96}\left(1+2+2^2+2^3+2^4\right)\)

\(=31\cdot\left(2+2^6+...+2^{96}\right)⋮31\)(đpcm)

Bài 1: 

Ta có: \(A=3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n\cdot9-2^n\cdot4+3^n-2^n\)

\(=3^n\left(9+1\right)-2^n\left(4+1\right)\)

\(=10\left(3^n-2^{n-1}\right)⋮10\)

Vậy: A có chữ số tận cùng là 0

Bài 2: 

Ta có: \(abcd=1000\cdot a+100\cdot b+10\cdot c+d\)

\(\Leftrightarrow abcd=1000\cdot a+96\cdot b+8c+2c+4b+d\)

\(\Leftrightarrow abcd=8\left(125a+12b+c\right)+\left(2c+4b+d\right)\)

mà \(8\left(125a+12b+c\right)⋮8\)

và \(2c+4b+d⋮8\)

nên \(abcd⋮8\)(đpcm)

3+5/x-1

3+36/x-4

x+1+4/x+1

x+1/x-5

a: 3x+2 chia hết cho x-1

=>3x-3+5 chia hết cho x-1

=>5 chia hết cho x-1

=>x-1 thuộc {1;-1;5;-5}

=>x thuộc {2;0;6;-4}

b: 3x+24 chia hết cho x-4

=>3x-12+36 chia hết cho x-4

=>36 chia hết cho x-4

=>x-4 thuộc {1;-1;2;-2;3;-3;4;-4;6;-6;9;-9;12;-12;18;-18;36;-36}

=>x thuộc {5;3;6;2;7;1;8;0;10;-2;13;-5;16;-8;22;-14;40;-32}

c: x^2+5 chia hết cho x+1

=>x^2-1+6 chia hết cho x+1

=>x+1 thuộc {1;-1;2;-2;3;-3;6;-6}

=>x thuộc {0;-2;1;-3;2;-4;5;-7}

d: x^2-5x+1 chia hết cho x-5

=>1 chia hết cho x-5

=>x-5 thuộc {1;-1}

=>x thuộc {6;4}

21 tháng 3 2016

3n-9/n-2=3(n-2+7)/3(n-2)=1+7/n-2

=> n-2 thuộc ước của 7={+-1;+-7)

=> n-2 =-1=>n=1 

n-2=1=>n=3

n-2=-7=> n=-5

n-2=7=>n=9 (mình không chắc đúng nha! :) )

22 tháng 11 2021

sssssssssssss

5 tháng 1 2017

1 giải

Ta có 17 chia hết cho 17

suy ra 17a+3a+b chia hết cho 17

suy ra 20a+2b chia hết cho 17

rút gọn cho 2

suy ra 10a+b chia hét cho 17 

2 giải

* nếu a-5b chia hết cho 17 thì 10a + b chia hết cho 17

vì a-5b chia hết cho 17 nên 10(a-5b) chia hết cho 17 => 10a-50b chia hết cho 17 => 10a-50b+51b chia hết cho 17 hay 10a + b chia hết cho 17 (1) *

nếu 10a + b chia hết cho 17 thì a-5b chia hết cho 17

vì 10a+b chia hết cho 17 nên 10a + b - 51b chia hết cho 17 => 10a - 50b chia hết cho 17 => 10(a-5) chia hết cho 17 mà (10;17)=1 nên a-5b chia hết cho 17 (2)

Từ (1) và (2) suy ra điều phải chứng minh

3 bó tay

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

27 tháng 3 2020

dài thế này bố nó cũng trả lời được

17 tháng 12 2021

nghĩ sao cho dài vậy