Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(M-N=77^2+75^2+....+1^2-\left(76^2+74^2+...+2^2\right)\)
\(=77^2+75^2+....+1^2-76^2-74^2-...-2^2\)
\(=\left(77^2-76^2\right)+\left(75^2-74^2\right)+...+\left(3^2-2^2\right)+1^2\)
\(=\left(77-76\right)\left(77+76\right)+\left(75-74\right)\left(75+74\right)+...+\left(3-2\right)\left(3+2\right)+1\)
\(=77+76+75+74+...+3+2+1\)
\(=\frac{\left[\left(77-1\right):1+1\right].\left(1+77\right)}{2}=\frac{77.78}{2}=3003\)
Thay vào S, ta có: \(S=\frac{M-N-3}{3000}=\frac{3003-3}{3000}=\frac{3000}{3000}=1\)
M-N=(77^2-76^2)+(75^2-74^2)+...+(3^2-2^2)+1(dùng HĐT số 3)
M-N=1+2+3+4+5+...+76+77
M-N=3003
Nên (M-N-3)/3=3000/3=1000
Nhớ tich cho mình nha bạn
\(B-A=76^2+74^2+...+4^2+2^2-77^2-...-3^2-1^2\)
\(=-77^2+\left(76^2-75^2\right)+\left(74^2-73^2\right)+...+\left(2^2-1^2\right)\)
\(=-77^2+\left(76+75\right)+\left(74+73\right)+...+\left(2+1\right)\)
\(=-77^2+\frac{\left(76+1\right)\left[\left(76-1\right)+1\right]}{2}=-77^2+2926\)
\(\Rightarrow A-B=77^2-2926=5929-5926=3\)
\(\Rightarrow A-B-3=3-3=0\)
\(\Rightarrow P=\frac{0}{3000}=0\)
\(a)\) Ta có :
\(\left(a+b\right)^2=a^2+2ab+b^2\)
\(\Rightarrow\)\(a^2+b^2=\left(a+b\right)^2-2ab\)
Thay \(a+b=23\) và \(ab=132\) vào \(a^2+b^2=\left(a+b\right)^2-2ab\) ta được :
\(a^2+b^2=23^2-2.132\)
\(a^2+b^2=529-264\)
\(a^2+b^2=265\)
Vậy \(a^2+b^2=265\)
Chúc bạn học tốt ~
a,\(a^2+b^2=\left(a+b\right)^2-2ab\)
thay a+b=23 và ab=132 vào tính nhé
b,theo đề ra ta có \(x+y=1\Leftrightarrow\left(x+y\right)^3=1\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=1\)(1)
thay x+y=1 vào (1)
ta đc \(x^3+y^3+3xy=1\)
bài 2
theo đề ra ta có \(\left(m+n+p\right)^2=255\Leftrightarrow m^2+n^2+p^2+2\left(mn+np+mp\right)=225\)(1)
thay \(m^2+n^2+p^2=77\) vào(1)
=>mn+np+mp=74
\(a^3+b^3+c^3=3abc\)
\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)
\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)
\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)
Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)
\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)
\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)
\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)
...
a: \(A=2\left(m^3+n^3\right)-3\left(m^2+n^2\right)\)
\(=2\left[\left(m+n\right)^3-3mn\left(m+n\right)\right]-3\left[\left(m+n\right)^2-2mn\right]\)
\(=2-6mn-3+6mn\)
=-1
c: \(C=\left(a-1\right)^3-4a\left(a+1\right)\left(a-1\right)+3\left(a-1\right)\left(a^2+a+1\right)\)
\(=a^3-3a^2+3a-1-4a\left(a^2-1\right)+3a^3-3\)
\(=4a^3-3a^2+3a-4-4a^3+4a\)
\(=-3a^2+7a-4\)
\(=-3\cdot9-21-4\)
=-27-21-4
=-52
Xét
M – N = 77 2 + 75 2 + 73 2 + … + 3 2 + 1 2 – ( 76 2 + 74 2 + … + 2 2 ) = ( 77 2 – 76 2 ) + ( 75 2 – 74 2 ) + ( 73 2 – 71 2 ) + … + ( 3 2 – 2 2 ) + 1 2
= (77 + 76)(77 – 76) + (75 + 74)(75 – 74) + … + (3 + 2)(3 – 2) + 1
= (77 + 76).1 + (75 + 74).1 + … + (3 + 2).1 + 1
= 77 + 76 + 75 + 74 + 73 + … + 3 + 2 + 1
= 77 + 1 2 . 77 = 3003
Từ đó M - N - 3 3000 = 3003 - 3 3000 = 3000 3000 = 1
Đáp án cần chọn là: C