K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
10 tháng 3 2021

Chọn \(f\left(x\right)=5x+5\)

Khi đó: \(\lim\limits_{x\rightarrow1}\dfrac{5x-5}{\left(\sqrt{x}-1\right)\left(\sqrt{20x+29}+3\right)}=\lim\limits_{x\rightarrow1}\dfrac{5\left(\sqrt{x}+1\right)}{\sqrt{20x+29}+3}=\dfrac{10}{7+3}=1\)

23 tháng 12 2023

\(\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^3+1\right)\cdot\sqrt{\dfrac{3x}{x^2-1}}\)

\(=\lim\limits_{x\rightarrow\left(-1\right)^+}\left(x^2-x+1\right)\left(x+1\right)\cdot\dfrac{\sqrt{3x}}{\sqrt{\left(x-1\right)\left(x+1\right)}}\)

\(=\lim\limits_{x\rightarrow\left(-1\right)^-}\sqrt{x+1}\cdot\left(x^2-x+1\right)\cdot\sqrt{\dfrac{3x}{x-1}}\)

\(=\sqrt{-1+1}\left[\left(-1\right)^2-\left(-1\right)+1\right]\cdot\sqrt{\dfrac{3\left(-1\right)}{-1-2}}\)

=0

NV
14 tháng 5 2021

Mấy câu này bạn cần giải theo kiểu trắc nghiệm hay tự luận nhỉ?

14 tháng 5 2021

Em cần kiểu tự luận ạ

NV
23 tháng 1 2021

Do \(\lim\limits_{x\rightarrow-1}\dfrac{2f\left(x\right)+1}{x+1}=5\) hữu hạn nên \(2f\left(x\right)+1=0\) phải có nghiệm \(x=-1\)

\(\Leftrightarrow2f\left(-1\right)=-1\Leftrightarrow f\left(-1\right)=-\dfrac{1}{2}\)

Đoạn dưới tự hiểu là \(\lim\limits_{x\rightarrow-1}\) (vì kí tự lim rất rắc rối)

\(I=\dfrac{\left[4f\left(x\right)+3\right]\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}-2\right]+2\left[4f\left(x\right)+3\right]-2}{x^2-1}\)

\(=\dfrac{\left[4f\left(x\right)+3\right]\left[4f^2\left(x\right)+2f\left(x\right)\right]}{\left(x+1\right)\left(x-1\right)\left[\sqrt{4f^2\left(x\right)+2f\left(x\right)+4}+2\right]}+\dfrac{4\left[2f\left(x\right)+1\right]}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{f\left(x\right).\left[4f\left(x\right)+3\right]}{x-1}+\dfrac{2f\left(x\right)+1}{x+1}.\dfrac{4}{x-1}\)

\(=5.\dfrac{f\left(-1\right).\left[4f\left(-1\right)+3\right]}{-2}+5.\dfrac{4}{-2}=\dfrac{5.\left(-\dfrac{1}{2}\right)\left(-2+3\right)}{-2}+5.\dfrac{4}{-2}=...\)

NV
23 tháng 1 2021

Không phải dạng, nó chỉ là ứng dụng kiến thức cơ bản về giới hạn của hàm thôi

NV
25 tháng 2 2020

Đáp án A

Đó là nguyên lý của giới hạn kẹp

\(\left|f\left(x\right)\right|\le\left|x\right|\Rightarrow\lim\limits_{x\rightarrow0}f\left(x\right)=\lim\limits_{x\rightarrow0}x=0\)

Chọn F(x)=5x-23

\(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5x-23-2}{x-5}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{5x-25}{x-5}=\lim\limits_{x\rightarrow5}\dfrac{5\left(x-5\right)}{x-5}=5\)

=>f(x)=5x-23 thỏa mãn yêu cầu đề bài

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\cdot f\left(x\right)+10}+\sqrt{f^3\left(x\right)+1}-7}{x^2-25}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3\left(5x-23\right)+10}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}+\sqrt{\left(5x-23\right)^3+1}-7}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\sqrt{15x-59}-4+\sqrt{\left(5x-23\right)^3+1}-3}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15x-59-16}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3+1-9}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23\right)^3-8}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15\left(x-5\right)}{\sqrt{15x-59}+4}+\dfrac{\left(5x-23-2\right)\left[\left(5x-23\right)^2+2\left(5x-23\right)+4\right]}{\sqrt{\left(5x-23\right)^3+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{15}{\sqrt{15x-59}+4}+\dfrac{5\cdot\left(25x^2-230x+529+10x-46+4\right)}{\sqrt{\left(5x-23\right)^3+1}+3}}{x+5}\)

\(=\dfrac{\dfrac{15}{\sqrt{15\cdot5-59}+4}+\dfrac{5\left(25\cdot5^2-220\cdot5+487\right)}{\sqrt{\left(5\cdot5-23\right)^3+1}+3}}{5+5}\)

\(=\dfrac{\dfrac{15}{8}+\dfrac{5\cdot12}{6}}{10}=\dfrac{19}{16}\)

NV
8 tháng 1

Do \(\lim\limits_{x\rightarrow5}\dfrac{f\left(x\right)-2}{x-5}\) hữu hạn nên \(f\left(x\right)-2=0\) có nghiệm \(x=5\)

\(\Rightarrow f\left(5\right)=2\)

\(\lim\limits_{x\rightarrow5}\dfrac{\sqrt{3f\left(x\right)+10}-4+\sqrt{f^3\left(x\right)+1}-3}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{3\left[f\left(x\right)-2\right]}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{\left[f\left(x\right)-2\right]\left[f^2\left(x\right)+2f\left(x\right)+4\right]}{\sqrt{f^3\left(x\right)+1}+3}}{\left(x-5\right)\left(x+5\right)}\)

\(=\lim\limits_{x\rightarrow5}\dfrac{\dfrac{f\left(x\right)-2}{x-5}.\dfrac{3}{\sqrt{3f\left(x\right)+10}+4}+\dfrac{f\left(x\right)-2}{x-5}.\dfrac{f^2\left(x\right)+2f\left(x\right)+4}{\sqrt{f^3\left(x\right)+1}+3}}{x+5}\)

\(=\dfrac{5.\dfrac{3}{\sqrt{3.2+10}+4}+5.\dfrac{2^2+2.2+4}{\sqrt{2^3+1}+3}}{5+5}=\)