K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2021

Từ A kẻ đường thẳng vuông góc với AN cắt CD tại Q

Ta có: \(\angle MAQ+\angle MCQ=90+90=180\Rightarrow AMCQ\) nội tiếp

\(\Rightarrow\angle AMQ=\angle ACQ=45\) mà \(\Delta MAQ\) vuông tại A 

\(\Rightarrow\Delta MAQ\) vuông cân tại A \(\Rightarrow AM=AQ\)

Áp dụng hệ thức lượng vào tam giác vuông \(QAN\) có \(AD\bot NQ\)

\(\Rightarrow\dfrac{1}{AD^2}=\dfrac{1}{AQ^2}+\dfrac{1}{AN^2}\Rightarrow\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)undefined

 

20 tháng 6 2023

Qua A kẻ đường thẳng vuông góc với AM cắt tia BC tại E.

Tam giác AEM vuông tại A có \(AB\perp EM\)

Ta có: \(S_{AEM}=\dfrac{1}{2}AE.AM=\dfrac{1}{2}AB.ME\)

\(\Rightarrow AE.AM=AB.ME\\ \Rightarrow\dfrac{1}{AB}=\dfrac{ME}{AE.AM}\\ \Rightarrow\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}\left(1\right)\)

Áp dụng đl pytago vào tam giác vuông AEM:

\(AE^2+AM^2=ME^2\)

Thay vào (1) ta có:

\(\dfrac{1}{AB^2}=\dfrac{ME^2}{AE^2.AM^2}=\dfrac{AE^2+AM^2}{AE^2.AM^2}=\dfrac{1}{AE^2}+\dfrac{1}{AM^2}\)

Mà AE = AN nên: \(\dfrac{1}{AB^2}=\dfrac{1}{AM^2}+\dfrac{1}{AN^2}\)

23 tháng 8 2023

Để chứng minh 1) AE = AN, ta sẽ sử dụng định lí hai đường trung bình của tam giác.Theo định lí hai đường trung bình, AM là đường trung bình của tam giác ABC.Vì vậy, ta có AM = 1/2(AB + AC).Đồng thời, ta cũng có AN là đường trung bình của tam giác ADC.Từ đó, ta có AN = 1/2(AD + AC).Do đó, để chứng minh AE = AN, ta cần chứng minh AE = 1/2(AB + AD).Ta biết rằng AE là đường cao của tam giác ABC với cạnh AB.Vì vậy, ta có AE = √(AB^2 - AM^2) (với AM là đường trung bình của tam giác ABC)Tương tự, ta biết rằng AN là đường cao của tam giác ADC với cạnh AD.Vì vậy, ta cũng có AN = √(AD^2 - AM^2) (với AM là đường trung bình của tam giác ADC)

23 tháng 8 2023

gì vậy?

23 tháng 8 2021

Kẻ \(AH\perp AK\)

Áp dụng hệ thức trong tam giác AHM vuông tại A với AB là đường cao có:

\(\dfrac{1}{AB^2}=\dfrac{1}{AH^2}+\dfrac{1}{AM^2}\)

Xét \(\Delta AHB\) và \(\Delta AKD\) có:

\(AB=AD\)

\(\widehat{HAB}=\widehat{DAK}\) (vì cùng phụ với góc MAB)

\(\widehat{HBA}=\widehat{ADK}=90^0\)

nên \(\Delta AHB=\)\(\Delta AKD\left(g.c.g\right)\)

\(\Rightarrow AH=AK\)

Khi đó \(\dfrac{1}{AB^2}=\dfrac{1}{AK^2}+\dfrac{1}{AM^2}\)

23 tháng 8 2021

Tại sao AB=AD ạ

 

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

góc BAM=góc DAN

=>ΔABM=ΔADN

=>AM=AN

=>ΔAMN vuông cân tại A

b: 1/AM^2+1/AE^2

=1/AN^2+1/AE^2

=1/AD^2 ko đổi