Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
D G F C N E O M B H K J I A
Gọi G là điểm đối xứng của M qua O \(\Rightarrow G=\left(1;-3\right)\in CD\)
Gọi I là điểm đối xứng của M qua O \(\Rightarrow I=\left(-1;5\right)\in AD\)
A B C D O
\(\overrightarrow{AO}=\overrightarrow{OC};\overrightarrow{DO}=\overrightarrow{OB}\);
\(\overrightarrow{OA}=\overrightarrow{CO};\overrightarrow{DO}=\overrightarrow{OB}\).
A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).
#)Góp ý :
Bạn tham khảo nhé :
gọi giao điểm của AC và BD là O
gọi H là trung điểm của OD
Do AN =3NC và O là trung điểm AC
=> N là trung điểm của OC
=> NH là đường trung bình của tam giác OCD
=> NH // CD // AB và NH = 1/2 CD = 1/2 AB = AM
=> AMNH là hình bình hành
=> MN // AH (1)
Lại có: trong tam giác ADN có AO vuong AN và NH vuông AD
=> H là trực tâm tam giác ADN
=> AH vuong ND (2)
Từ (1)(2) => MN vuông ND
=> tam giac DNM vuong tại N
Kéo dài NH cắt AD tại K
Rõ ràng tam giác AKN là tam giác vuông cân (do gocKAN = 45)
=> AK = KN
=> 2 tam giac vuông AHK và NDK bằng nhau (gcg)
=> AH = ND
mà AH = MN (do AMNH là hình bình hành)
=> MN = ND
=> tam giac DMN vuông cân tại N
Nguồn : Cho hình vuông ABCD có M là trung điểm của AB, N thuộc đoạn AC sao cho NA = 3NC. Chứng minh tam giác DMN vuông cân tại N. Tính độ dài cạnh của hình vuông biết MN = √10 - Toán học Lớp 9 - Bài tập Toán học Lớp 9 - Giải bài tập Toán học Lớp 9 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
Link : https://lazi.vn/edu/exercise/cho-hinh-vuong-abcd-co-m-la-trung-diem-cua-ab-n-thuoc-doan-ac-sao-cho-na-3nc-chung-minh-tam-giac-dmn
A B C D O M N E F
a) Giả sử \(\overrightarrow{OA}+\overrightarrow{OC}=\overrightarrow{OB}+\overrightarrow{OD}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{OC}-\overrightarrow{OB}-\overrightarrow{OD}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{OA}+\overrightarrow{BO}+\overrightarrow{OC}+\overrightarrow{DO}=\overrightarrow{0}\)
\(\Leftrightarrow\left(\overrightarrow{BO}+\overrightarrow{OA}\right)+\left(\overrightarrow{DO}+\overrightarrow{OC}\right)=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{BA}+\overrightarrow{DC}=\overrightarrow{0}\) (đúng do tứ giác ABCD là hình bình hành).
b) \(\overrightarrow{ME}+\overrightarrow{FN}=\overrightarrow{MA}+\overrightarrow{AE}+\overrightarrow{FC}+\overrightarrow{CN}\)
\(=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\).
Do các tứ giác AMOE, MOFB, OFCN, EOND cũng là các hình bình hành.
Vì vậy \(\overrightarrow{CN}=\overrightarrow{FO}=\overrightarrow{BM};\overrightarrow{FC}=\overrightarrow{ON}=\overrightarrow{ED}\).
Do đó: \(\overrightarrow{ME}+\overrightarrow{FN}=\left(\overrightarrow{MA}+\overrightarrow{CN}\right)+\left(\overrightarrow{AE}+\overrightarrow{FC}\right)\)
\(=\left(\overrightarrow{MA}+\overrightarrow{BM}\right)+\left(\overrightarrow{AE}+\overrightarrow{ED}\right)\)
\(=\overrightarrow{BA}+\overrightarrow{AD}=\overrightarrow{BD}\) (Đpcm).