K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Goi giao diem cua tia AE va DN la G

a.Ta co:\(\widehat{G}=\widehat{AME}\)(cung phu \(\widehat{GEC}\))(1)

\(\widehat{G}+\widehat{ANG}=90^0\)

\(\widehat{AME}+\widehat{AEM}=90^0\)

\(\Rightarrow\widehat{ANG}=\widehat{AEM}\) (2)

Tu (1) va (2) suy ra:\(\Delta AGN=\Delta AME\left(g-g-g\right)\)

Suy ra:\(AN=AE\)(2 canh tuong ung)

b,Ta co:\(\frac{1}{AB^2}=\frac{1}{AM^2}+\frac{1}{AE^2}\)

\(\Rightarrow\frac{1}{AM^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\left(AE=AN\right)\)

a: Xét ΔABM vuông tại B và ΔADN vuông tại D có

AB=AD

góc BAM=góc DAN

=>ΔABM=ΔADN

=>AM=AN

=>ΔAMN vuông cân tại A

b: 1/AM^2+1/AE^2

=1/AN^2+1/AE^2

=1/AD^2 ko đổi

14 tháng 5 2022

Tham khảo: \(I-->N\) nhé bạn:D

14 tháng 5 2022

=)))))))

cảm ơn bạn