K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Giải:

a) Ta có: AB // CD, CD _|_ a 

\(\Rightarrow\) AB _|_ a

\(\Rightarrow\widehat{A}=90^o\)

b) Vì AB // CD nên:

\(\widehat{C_1}=\widehat{B_4}=61^o\) ( đồng vị )

\(\Rightarrow\widehat{B_4}=\widehat{B_2}=61^o\) ( đối đỉnh )

\(\Rightarrow\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù )

Mà \(\widehat{B_2}=61^o\Rightarrow\widehat{B_1}=119^o\)

\(\Rightarrow\widehat{B_1}=\widehat{C_2}=161^o\) ( đồng vị )

Vậy a) \(\widehat{A}=90^o\)

        b) \(\widehat{B_2}=61^o,\widehat{B_1}=119^o,\widehat{C_2}=119^o\)

21 tháng 9 2016

Hình vẽ có rồi nha!!!!!!

a) Vì AB // CD (gt)

\(\Rightarrow\)\(\widehat{D} = \widehat{A}\) (so le trong)

mà \(\widehat{D} = 90^0\) (gt)

\(\Rightarrow\)\(\widehat{A} = 90^0\)

b) Ta có:

\(\widehat{C1} + \widehat{C2} = 180^0\) (kề bù)

\(61^0+ \widehat{C2} = 180^0 (\widehat{C1} = 61^0(gt))\)

\(\widehat{C2} = 119^0\)

Vì AB // CD (gt)

\(\Rightarrow\) \(\widehat{C2} = \widehat{B1} = 119^0\) (đồng vị)

\(\widehat{B2} = \widehat{C1} = 61^0\) (so le ngoài)

5 tháng 12 2021

\(a,\text{So le trong: }\widehat{A_1}\text{ và }\widehat{B_2}\\ \text{Đồng vị: }\widehat{A_1}\text{ và }\widehat{B_4}\\ b,a\text{//}b\Rightarrow\widehat{A_1}=\widehat{B_2}=42^0\\ \Rightarrow\widehat{B_1}=180^0-\widehat{B_2}=138^0\left(\text{kề bù}\right)\)

5 tháng 12 2021

giúp mik tìm thêm so le trong và đồng vị thêm một cặp góc nx ik bạn

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a) Góc ở vị trí so le trong với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_4}}\)

Góc ở vị trí đồng vị với góc \(\widehat {{B_2}}\) là: \(\widehat {{A_2}}\)

b) Vì a // b nên:

+) \(\widehat {{A_4}} = \widehat {{B_2}}\)( 2 góc so le trong), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_4}} = 40^\circ \)

+) \(\widehat {{A_2}} = \widehat {{B_2}}\) ( 2 góc đồng vị), mà \(\widehat {{B_2}} = 40^\circ \) nên \(\widehat {{A_2}} = 40^\circ \)

Ta có: \(\widehat {{B_2}} + \widehat {{B_3}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_3}} = 180^\circ  \Rightarrow \widehat {{B_3}} = 180^\circ  - 40^\circ  = 140^\circ \)

c) Ta có: \(\widehat {{B_2}} + \widehat {{B_1}} = 180^\circ \) ( 2 góc kề bù) nên \(40^\circ  + \widehat {{B_1}} = 180^\circ  \Rightarrow \widehat {{B_1}} = 180^\circ  - 40^\circ  = 140^\circ \)

Vì a // b nên \(\widehat {{A_1}} = \widehat {{B_1}}\) (2 góc đồng vị) nên \(\widehat {{A_1}} = 140^\circ \)

6 tháng 10 2021

a) Ta có: CD//Ey

\(\Rightarrow\widehat{CBE}=\widehat{E_1}=130^0\)(so le trong)

b) Ta có: Ta có: CD//Ey

\(\Rightarrow\widehat{EBD}+\widehat{E_1}=180^0\)(trong cùng phía)

\(\Rightarrow\widehat{EBD}=180^0-\widehat{E_1}=50^0\)

Ta có: \(\widehat{EBD}+\widehat{B_1}=50^0+40^0=90^0\)

=> AB⊥BE

20 tháng 4 2017

Vì a // b nên ta có:

a) ^B1 = ^A4 = 37° (2 góc so le trong)

Vậy ^B1 = 37°.

b) ^A1 = ^B4 (2 góc đồng vị).

c) ^B2 + ^A4 = 180° (2 góc trong cùng phía)

hay ^B2 + 37° =180°.

=> ^B2 = 180° - 37° = 143°.

Vậy ^B2 = 143°.

20 tháng 4 2017

undefined

HQ
Hà Quang Minh
Giáo viên
18 tháng 9 2023

a)      Xét \(\Delta ABD\) và \(\Delta CBD\)có:

DA=DC(gt)

BD chung

BA=BC

Vậy \(\Delta ABD = \Delta CBD\)(c.c.c)

b)     Ta có \(\widehat A = \widehat C = {90^o}\)(hai góc tương ứng)

Theo định lí tổng ba góc trong tam giác BCD, ta có:

\(\begin{array}{l}\widehat C + \widehat {CDB} + \widehat {DBC} = {180^o}\\ \Rightarrow {90^o} + {30^o} + \widehat {DBC} = {180^o}\\ \Rightarrow \widehat {DBC} = {60^o}\end{array}\)

Mà \(\Delta ABD = \Delta CBD\) nên \(\widehat {ABD} = \widehat {CBD}\) ( 2 góc tương ứng)

\(\Rightarrow \widehat {ABD} = \widehat {CBD} = {60^o}\\\Rightarrow \widehat {ABC} = \widehat {ABD} + \widehat {CBD} = {60^o} + {60^o} = {120^o}\)

13 tháng 10 2021

\(a//b;a\perp AB\Rightarrow b\perp AB\Rightarrow\widehat{B}=90^0\)

\(a//b\Rightarrow\widehat{D}+\widehat{C}=180^0\left(trong.cùng.phía\right)\\ \Rightarrow\widehat{D}=180^0-130^0=50^0\)

13 tháng 10 2021

a,Ta thấy \(\widehat{B}\) là góc vuông

\(\Rightarrow\widehat{B}=90^o\)

\(\widehat{C}+\widehat{D}=180^o\)(bù nhau)

\(\Rightarrow\widehat{D}=180^o-130^o=50^o\)