K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a:

ABCD là hình thoi

=>AC vuông góc BD tại trung điểm của mỗi đường

=>AC vuông góc BD tại O và O là trung điểm chung của AC và BD

AM+MB=AB

PC+PD=DC

mà AM=PC và AB=DC

nên MB=PD

Xét tứ giác BMDP có

BM//DP

BM=DP

Do đó: BMDP là hình bình hành

b: Xét tứ giác AQCN có

AQ//CN

AQ=CN

Do đó: AQCN là hình bình hành

=>AC cắt QN tại trung điểm của mỗi đường

=>O là trung điểm của QN

=>N,O,Q thẳng hàng

c: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD

=>MQ vuông góc AC

Xét ΔABC có

BM/BA=BN/BC

nên MN//AC

=>MQ vuông góc MN

BMDP là hình bình hành

=>BD cắt MP tại trung điểm của mỗi đường

=>O là trung điểm của MP

Xét tứ giác MNPQ có

O là trung điểm chung của MP và NQ

góc NMQ=90 độ

Do đó: MNPQ là hình chữ nhật

1 tháng 9 2023

Mình cảm ơn ạ

8 tháng 8 2017

a) Chứng minh được MBPD và BNDQ đều là hình bình hành Þ ĐPCM.

b) Áp dụng định lý Talet đảo cho DABD và DBAC tacos MQ//BD và MN//AC.

Mà ABCD là hình thoi nên AC ^ BD Þ MQ ^ MN

MNPQ là hình chữ nhật vì có các góc ở đỉnh là góc vuông

30 tháng 10 2016

a) Hai tam giác OAM và OCP có: OA = OC 

                                                    ˆOAM=ˆOCP ( AB song song CD )

                                                    AM = CP

Suy ra 2 tam giác này bằng nhau => ˆMOA=ˆCOP => M, O, P thẳng hàng.

Tương tự suy ra N, O, Q thẳng hàng

b) Do BM = BN, BA = BC nên theo định lí Thales đảo suy ra MN song song AC + PQ song song AC => MN song song PQ. 

Tương tự MQ song song NP. Mà ta lại có AC vuông góc với BD => MNPQ là hình chữ nhật.

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.1) C/m : tứ giác AMND là hình bình hành.2) C/m: tứ giác AMCN là hình bình hành.B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.1) C/m: O là trung điểm của EF.2) C/m: tứ  giác AECF là hình bình hành3) C/m: tứ giác BDEF là hình bình hành.B3: cho hình bình...
Đọc tiếp

B1: cho hình bình hành ABCD có M là trung điểm của AB và N là trung điểm của CD.

1) C/m : tứ giác AMND là hình bình hành.

2) C/m: tứ giác AMCN là hình bình hành.

B2: Cho hình bình hành ABCD. Gọi O là giao điểm của 2 đường chéo AC và BD. Một đường thẳng qua O cắt AB tại E và cắt CD tại F.

1) C/m: O là trung điểm của EF.

2) C/m: tứ  giác AECF là hình bình hành

3) C/m: tứ giác BDEF là hình bình hành.

B3: cho hình bình hành ABCD. Trên cạnh AB lấy điểm E, trên cạnh CD lấy điểm F sao cho AE=CF. Gọi O là giao điểm của AC và BD.

1) C/m: tứ giác AECF là hình bình hành.

2) C/m: O là trung điểm của EF.

B4: Cho hình bình hành ABCD có hai đường chéo AB và CD cắt nhau tại O. Gọi M,N,P,Q lần lượt là tủng điểm của các đoạn OA, OB, OC, OD.

1)C/m : tứ giác MNPQ là hình bình hành.

2) C/m: các tứ giác ANCQ , BPDM là các hình bình hành.

Giúp mik với nha, thanks !!!!

3
20 tháng 8 2017

đã hỏi thì hỏi ít thôi. hỏi lắm thế

20 tháng 8 2017

hỏi 1 lần luôn cho lẹ, k cần mn giải hết đâu, biết bài nào thì giải giúp th

25 tháng 9 2018

Bài khá dài đó.

Sorry nhé mik mới lớp 6 ak nên ko bít, tha lỗi nha!

ý kiến gì thì nhắn tin cho mik mai 7g

pp, ngủ ngon!

14 tháng 10 2019

Bạn Nữ hoàng Elsa lửa bn k biết thì đừng trả lời nhé

2 tháng 8 2018

a)

△AQD và △CNB có:

- \(\widehat{DAQ}=\widehat{BCN}\) (Hai nửa của 2 góc bằng nhau)

- AP = BC (Hai cạnh đôi 1 hình bình hành)

- \(\widehat{ADQ}=\widehat{CBN}\) (Hai nửa của 2 góc bằng nhau)

⇒ △AQD = △CNB (g-c-g) ⇒ AQ = CN

Tương tự có: AM = CP

△AMQ và △CPN có:

- AQ = CN (cmt)

- \(\widehat{MAQ}=\widehat{PCN}\) (Hai nửa của 2 góc bằng nhau)

- AM = CP (cmt)

⇒ △AMQ = △CPN (c-g-c) ⇒ MQ = NP (1)

Tương tự cũng có MN = QP (2)

△MQP có O là trung điểm của cạnh MP và QO vuông góc MP (tính chất 2 tia phân giác của 2 góc kề bù) ⇒ QO là trung tuyến ứng với cạnh MP đồng thời cũng là đường cao ứng với cạnh này ⇒ △MQP cân tại Q ⇒ QM = OP (3)

Từ (1), (2), (3) có MN = NP = PQ = QM ⇒ MNPQ là hình thoi (theo dấu hiệu 1: Tứ giác có 4 cạnh bằng nhau là hình thoi)

2 tháng 8 2018

b)

Theo câu a, MNPQ là hình thoi nên AC vuông góc BD và hình thoi có các đường chéo là phân giác của các góc nên các tam giác: △AMO = △CNO = △CPO = △AQO (g-c-g)

⇒ OM = ON = OP = OQ ⇒ MP = NQ ⇒ MNPQ là hình chữ nhật

△MOQ = △MON (c-g-c) ⇒ MN = MQ ⇒ Hình chữ nhật MNPQ lại là hình vuông (Theo dấu hiệu 1: Hình chữ nhật có 2 cạnh kề bằng nhau là hình vuông)

Vậy MNPQ là hình vuông ⇔ ABCD là hình thoi