K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 2 2020

A B C D M

Ta có : \(\widehat{AMB}+\widehat{BMC}+\widehat{DMC}=180^0\)

\(\Rightarrow\widehat{AMB}+\widehat{DMC}=90^0\)

Đồng thời : \(\widehat{AMB}+\widehat{ABM}=90^0\)

\(\Rightarrow\widehat{DMC}=\widehat{ABM}\)

Xét \(\Delta ABM\)VÀ \(\Delta DMC\)có :

\(\widehat{MAB}=\widehat{MDC}=90^0\)

\(\widehat{ABM}=\widehat{DMC}\)

Do đó \(\Delta ABM\)đồng dạng \(\Delta DMC\left(g.g\right)\)

\(\Rightarrow\frac{AB}{AM}=\frac{MD}{DC}\Rightarrow AB.DC=MD.AM\)

Mà \(AM=MD\) , nên : \(AB.DC=AM.AM\left(đpcm\right)\)

b ) Vì \(\Delta ABM\)đồng dạng \(\Delta DMC\)nên :
\(\frac{BM}{MC}=\frac{AB}{MD}\)hay \(\frac{BM}{MC}=\frac{AB}{AM}\)

Đồng thời : \(\widehat{MAB}=\widehat{MDC}=90^0\)

Do đó  tam giác ABM đồng dạng tam giác MBC(c-g-c)

Chúc bạn học tốt !!!

a: Xét ΔABM vuông tại A và ΔDMC có

BA/DM=AM/CD

nên ΔABM đồng dạng với ΔDMC

b: Ta có: ΔABM đồng dạng với ΔDMC

nên góc AMB=góc DCM

=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ

=>góc BMC=90 độ

=>ΔBMC vuông tại M

c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)

a: Xét ΔABM vuông tại A và ΔDMC có

BA/DM=AM/CD

nên ΔABM đồng dạng với ΔDMC

b: Ta có: ΔABM đồng dạng với ΔDMC

nên góc AMB=góc DCM

=>góc AMB+góc DMC=góc DCM+góc DMC=90 độ

=>góc BMC=90 độ

=>ΔBMC vuông tại M

c: \(S=MB\cdot\dfrac{MC}{2}=10\cdot\dfrac{20}{2}=100\left(cm^2\right)\)

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HDa , Chứng minh rằng ABMN là hình bình hành .b , Chứng minh rằng N là trực tâm của tam giác AMDc , Chứng minh rằng góc BMD = 90 độd , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo...
Đọc tiếp

1 , Cho hình vuông ABCD có  góc A = góc D = 90 độ và cạnh AB = \(\frac{1}{2}\)CD . H là hình chiếu vuông góc của D lên canh AC . Điểm M , N là trung điểm của HC và HD

a , Chứng minh rằng ABMN là hình bình hành .

b , Chứng minh rằng N là trực tâm của tam giác AMD

c , Chứng minh rằng góc BMD = 90 độ

d , Biết CD = 16 cm , AD = 6 cm . Tính diện tích hình thang ABCD .

2 , Cho hình bình hành ABCD có góc A < 90 độ . Hai đường chéo AC , BD cắt nhau tại O . Vẽ DE , DF lần lượt vuông góc với AB và BC . Chứng minh rằng tam giác EOF cân.

3 , Cho hình thang ABCD có góc A = 60 độ . Trên tia AD lấy M , trên tia Bc lấy N sao cho AM = DN

a , Chứng minh rằng tam giác ADM = tam giác DBN

b , Chứng minh rằng góc MBN = 60 độ

c , Chứng minh rằng tam giác BNM đều .

4 , Cho hình vuông ABCD , vẽ góc xAy = 90 độ . Ax cắt BC ở M , Ay cắt CD ở N

a , Chứng minh rằng tam giác MAN vuông cân

b , Vẽ hình bình hành AMFN có O là giao điểm 2 đường chéo . Chứng minh rằng OA = OC = \(\frac{1}{2}\) AF và tam giác ACF vuông tại C .

5 , Cho hình vuông ABCD . Trên BC lấy điểm E . Từ A kẻ vuông góc với AE cắtt CD tạ F . Gọi I là trung điểm của EF . M là giao điểm của AI và CD . Qua E kẻ đường thẳng song song với CD cắt AI tại N .

a , Chứng minh rằng MENF là hình thang

b , Chứng minh rằng chu vi tam giác CME không đổi khi E chuyển động trên BC .

0
13 tháng 6 2019

A B C D P Q H

a) Xét tam giác BHP và tam giác CHB có: \(\widehat{HPB}=\widehat{HBC}\)( cùng phụ góc PBH) (1)

và \(\widehat{PHB}=\widehat{BHC}\left(=90^o\right)\)

=> tam giác BHP ~  tam giác CHB 

=> \(\frac{BH}{HC}=\frac{BP}{BC}\Leftrightarrow\frac{BH}{HC}=\frac{BQ}{DC}\)( vì BP=BQ, BC=DC)

Ta lại có : \(\widehat{HPB}=\widehat{HCD}\) ( so le trong) (2)

Từ (1) , (2) => \(\widehat{HBC}=\widehat{HCD}\)   =>  \(\widehat{HBQ}=\widehat{HCD}\)

Xét tam giác HBQ và tam giác HCD có:

\(\frac{BH}{HC}=\frac{BQ}{DC}\)\(\widehat{HBQ}=\widehat{HCD}\)

=>  tam giác HBQ ~tam giác HCD 

b)  Có:  tam giác HBQ ~tam giác HCD  ( theo a)

=> \(\widehat{DHC}=\widehat{QHB}\)

mà \(\widehat{QHB}+\widehat{QHC}=\widehat{BHC}=90^o\)

=> ​\(\widehat{DHC}+\widehat{QHC}=\widehat{DHQ}=90^o\)



 

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm