K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
TL
18 tháng 6 2019
Gái xinh review app chất cho cả nhà đây: https://www.facebook.com/watch/?v=485078328966618 Link tải app: https://www.facebook.com/watch/?v=485078328966618
Y
1 tháng 7 2019
Kẻ đg cao BH của hình thang ABCD
Qua C kẻ đg thẳng ⊥ với CE cắt AD tại F
+ Tứ giác ABHD là HCN
=> BH = AD = CD
+ ΔBCH = ΔCFD ( g.c.g )
=> BC = CF
+ ΔCEF vuông tại C, đg cao CD
\(\Rightarrow\frac{1}{CD^2}=\frac{1}{CE^2}+\frac{1}{CF^2}\)
\(\Rightarrow\frac{1}{AD^2}=\frac{1}{CE^2}+\frac{1}{BC^2}\)
Bạn tự vẽ hình nhé.
Qua \(C\) vẽ đường thẳng vuông góc với \(CE\) cắt \(AD\) ở \(F\). Kẻ \(BH\perp CD,\) suy ra \(ABHD\) là hình chữ nhật. Do đó \(BH=AD=CD.\) Mặt khác \(\angle CFD=\angle BCH\) (cùng phụ với \(\angle DEC\)). Suy ra \(\Delta CDF=\Delta BHC\) (hai tam giác vuông bằng nhau theo trường hợp g.c.g). Thành thử \(CF=BC.\)
Xét tam giác vuông \(CEF\) có đường cao \(CD\), suy ra \(\frac{1}{CD^2}=\frac{1}{CF^2}+\frac{1}{CE^2}\to\frac{1}{AD^2}=\frac{1}{BC^2}+\frac{1}{CE^2}.\) (ĐPCM).