K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 1: Tam giác ABC vuông tại A có AM là đường trung tuyến ứng với cạnh huyền BC

 => AM=\(\frac{1}{2}\)BC mà AM=6 cm=> BC=12cm.

Tam giác ANB vuông tại A có AN2+AB2=BN2 (Theo Pytago)   mà BN=9cm (gt)

=>AN2+AB2=81        Lại có AN=\(\frac{1}{2}\)AC =>\(\frac{1}{2}\)AC2+AB2=81     (1)

Tam giác ABC vuông tại A có: AC2+AB2=BC=> BC2 - AB= AC2   (2)

Từ (1) và (2) suy ra \(\frac{1}{4}\)* (BC- AB2)+AB2=81       mà BC=12(cmt)

=> 36 - \(\frac{1}{4}\)AB2+AB2=81

=> 36+\(\frac{3}{4}\)AB2=81

=> AB2=60=>AB=\(\sqrt{60}\)

C2

Cho hình thang cân ABCD có đáy lớn CD = 1

C4

Câu hỏi của Thiên An - Toán lớp 9 - Học toán với OnlineMath

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

7 tháng 8 2015

-Gọi hình thang là ABCD, đáy nhỏ AB, đáy lớn CD, có AC⊥AD.

-Từ đỉnh A kẻ đường cao AH của hình thang. Khi đó, DH = \(\frac{50-14}{2}=18\) (cm) và CH = 50 - 18 = 32 (cm)

-Xét tam giác ACD vuông tại A, đường cao AH có:

\(AH^2=HD.HC=18.32=576\Rightarrow AH=24\)(cm)

-Xét tam giác AHD vuông tại H: \(AD=\sqrt{AH^2+DH^2}=\sqrt{24^2+18^2}=30\) (cm)

-Đã có hết các cạnh và đường cao của hình thang, áp dụng công thức tính ra chu vi và diện tích.

29 tháng 9 2017

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Hai đường chéo AC, BD cắt nhau tại H. Trong tam giác vuông ABD, ta có:

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Kẻ đường cao CK của tam giác ABC, dễ thấy KB = AB – DC = 6 - 8/3 = 10/3.

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

Tam giác vuông ABD có D B 2 = A B 2 + A D 2 = 6 2 + 4 2  = 52, từ đó DB = 52 = 2 13 (cm)

Kẻ CH,DK lần lượt vuông góc AB

ΔCAB vuông tại C 

=>CA^2+CB^2=AB^2

=>CA^2+10^2=26^2

=>CA=24cm

ΔCAB vuông tại C có CH là đường cao

nên CH*AB=CA*CB

=>CH*26=10*24=240

=>CH=120/13(cm)

ΔCHB vuông tại H

=>HB^2+CH^2=CB^2

=>HB^2=10^2-(120/13)^2=2500/169(cm)

=>HB=50/13(cm)

Xét ΔDKA vuông tại K và ΔCHB vuông tại H có

DA=CB

góc DAK=góc CBH

=>ΔDKA=ΔCHB

=>KA=HB=50/13cm

KH=AB-AK-HB

=26-50/13*2=238/13(cm)

Xét tứ giác KDCH có

DC//KH

DK//CH

Do đó: KDCH là hình bình hành

=>DC=KH=238/13(cm)

S ABCD=1/2*(DC+AB)*CH

=1/2(238/13+26)*120/13

=34560/169(cm2)