Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Kẻ AM vuông góc với CD tại M.
Đặt D M = a . Ta có A M = 1 − a 2 ; C D = 2 a + 1
Diện tích của hình thang là
S = 1 2 A B + C D . A M = 1 2 2 a + 2 1 − a 2 = a + 1 1 − a 2
Bài toán trở thành tìm giá trị lớn nhất của hàm số f a = a + 1 1 − a 2 trên (0;1)
Sử dụng chức năng TABLE của máy tính ta nhập
Nhìn vào bảng giá trị ta thấy giá trị lớn nhất của hàm số ≈ 1,299 . So sánh với các phương án chỉ thấy D thỏa mãn, ta chọn D.
Chọn B.
Phương pháp:
Tỉ lệ thể tích của các khối chóp .S ABCD và .S MBCDN bằng tỉ lệ diện tích các đa giác ABCD và MBCDN .
Cách giải:
Do các khối chóp .S ABCD và S.MBCDN có cùng chiều cao kẻ từ S nên
Vì ABCD là hình thang cân nên AD = BC = 3.
Gọi ∆ là đường thẳng qua C và song song với AB.
Gọi (S) là mặt cầu tâm A bán kính R = 3. Điểm D cần tìm là giao điểm của ∆ và (S).
Đường thẳng ∆ có vectơ chỉ phương A B → - 2 ; 6 ; 3 nên có phương trình:
x = 2 - 2 t y = 3 + 6 t z = 3 + 3 t
Phương trình mặt cầu
S : x - 3 2 + y + 1 2 + z + 2 2 = 9 .
Tọa độ điểm D là nghiệm của phương trình
- 2 t - 1 2 + 6 t + 4 2 + 3 t + 5 2 = 9 ⇔ 49 t 2 + 82 t + 33 = 0 ⇔ t = - 1 t = - 33 49 .
Đáp án B
Đáp án D
Dựng A H ⊥ C D . Đặt D H = x 0 < x < 1
Ta có: D C = 2 x + 1 ⇒ A H = 1 − x 2
S A B C D = 1 + 2 x + 1 2 1 − x 2 = 1 + x 1 − x 2 = f x ⇒ f ' x = 1 − x 2 − 1 + x x 1 − x 2 = 0 ⇔ 1 − x 2 = 1 + x x ⇔ 2 x 2 + x − 1 = 0 ⇔ x = − 1 l o a i x = 1 2 ⇒ S m a x = f 1 2 = 3 3 4 ⇔ x = 1 2