K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 4 2018

bạn tự vẽ hình nhé 

a) Xét \(\Delta ABD\)và \(\Delta BDC\)có \(\widehat{BAD}=\widehat{CBD}\left(=90\right);\widehat{ADB}=\widehat{BCD}\)(cùng phụ với \(\widehat{BDC}\)

                           \(\Rightarrow\Delta ABD\infty\Delta BDC\left(g.g\right)\)   

b) Áp dụng định lý pytago vào \(\Delta ABD\)có \(BD^2=AB^2+AD^2=16+9=25\Rightarrow BD=5\)              

từ \(\Delta ABD\infty\Delta BDC\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\Rightarrow DC=\frac{BD^2}{AB}=\frac{25}{4}\)

7 tháng 5 2021

a) Vì tứ giác ABCD là hình thang vuông 

=> AB song song CD

=> góc ABD = góc BDC

Xét tam giác ABD và tam giác BDC có:

góc BAD = góc CBD (=90*)

Góc ABD = Góc BDC ( cmt)

=> tam giác ABD đồng dạng tam giác BDC (g.g)

b) Vì tam giác ABD vuông tại A nên theo ĐL Py-ta-go ta có:

  BD2 = AB2 + AD2

=> BD2 = 4+ 32

=> BD= 25

=> BD = 5 (cm)

Vì tam giác ABD đồng dạng tam giác BDC ( cm ý a)

=> AB/BD = BD/DC ( 2 cặp cạnh tương ứng)

=> 4/5 = 5/DC

=> DC = 6,25

8 tháng 5 2021

c) Kẻ \(AH\perp BD\).

Dẽ thấy:  \(\frac{S_{ADE}}{S_{ABD}}=\frac{\frac{AH.DE}{2}}{\frac{AH.BD}{2}}=\frac{DE}{BD}\).

Vì \(AB//CD\)( do hình thang ABCD vuông tại A và D).

Và E là giao điểm của AC và BD.

\(\Rightarrow\frac{DE}{BE}=\frac{CD}{AB}\)(hệ quả của dịnh lí Ta-lét).

\(\Rightarrow\frac{DE}{BE}=\frac{6,25}{4}=\frac{25}{16}\)(thay số).

\(\Rightarrow\frac{DE}{BE+DE}=\frac{25}{16+25}\)(tính chất của tỉ lệ thức).

\(\Rightarrow\frac{DE}{BD}=\frac{25}{41}\).

Do đó \(\frac{S_{ADE}}{S_{ABD}}=\frac{25}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.S_{ABD}}{41}=\frac{25.\frac{AB.AD}{2}}{41}=\frac{25.\frac{4.3}{2}}{41}\).

\(\Rightarrow S_{ADE}=\frac{25.6}{41}=\frac{150}{41}\left(cm^2\right)\).
vậy \(S_{ADE}=\frac{150}{41}cm^2\).

a: Ta có: ΔABC vuông tại A

=>\(BC^2=AB^2+AC^2\)

=>\(BC^2=25+49=74\)

=>\(BC=\sqrt{74}\left(cm\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{DB}{AB}=\dfrac{DC}{AC}\)

=>\(\dfrac{DB}{5}=\dfrac{DC}{7}\)

mà \(DB+DC=BC=\sqrt{74}\)

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{DB}{5}=\dfrac{DC}{7}=\dfrac{DB+DC}{5+7}=\dfrac{\sqrt{74}}{12}\)

=>\(DB=\dfrac{\sqrt{74}}{12}\cdot5=\dfrac{5\sqrt{74}}{12}\left(cm\right);DC=\dfrac{7\sqrt{74}}{12}\left(cm\right)\)

b: Xét ΔCAB có ED//AB

nên \(\dfrac{CE}{CA}=\dfrac{CD}{CB}=\dfrac{ED}{AB}\)

=>\(\dfrac{CE}{7}=\dfrac{ED}{5}=\dfrac{7\sqrt{74}}{12}:\sqrt{74}=\dfrac{7}{12}\)

=>\(CE=\dfrac{7}{12}\cdot7=\dfrac{49}{12}\left(cm\right);ED=7\cdot\dfrac{5}{12}=\dfrac{35}{12}\left(cm\right)\)

c: Xét ΔABC vuông tại A và ΔEDC vuông tại E có

\(\widehat{ACB}\) chung

Do đó: ΔABC~ΔEDC

=>\(k=\dfrac{BC}{DC}=\sqrt{74}:\dfrac{7\sqrt{74}}{12}=\dfrac{12}{7}\)

1: Xét tứ giác ABDE có

DE//AB

góc EAB=90 độ

=>ABDE là hình thang vuông

XétΔCED vuông tại E và ΔCAB vuông tại A có

góc C chung

=>ΔCED đồng dạng với ΔCAB

2: AC=căn 15^2-9^2=12cm

S ABC=1/2*AB*AC=1/2*12*9=54cm2

Xét ΔABC có AD là phân giác

nên BD/CD=AB/AC=3/4

=>CD/BD=4/3

=>CD/BC=4/7

ΔCED đồng dạng với ΔCAB

=>ED/AB=CD/CB=4/7

=>ED=9*4/7=36/7cm

3: Gọi giao của CM với ED làI

Xét ΔCAM có EI//AM

nên EI/AM=CI/CM

Xét ΔCMB có ID//MB

nên ID/MB=CI/CM

=>EI/AM=ID/MB

mà AM=MB

nên EI=ID

=>I là trung điểm của ED

bài nãy dễ mk ms đk cô giáo chữa cho  ^~^

19 tháng 4 2019

Câu c là DM nhak mình ghi nhầm 

On cần gấp

19 tháng 4 2019

Gọi r là chiều rộng

d là chiều dài

Chu vi  hình vuông là:

9.4=36( cm)

=> chu vi hình vuông là 36 cm

=>( r+d).2=36( cm)

=>( r+d)=18( cm)

=> r=8(cm)

 Vậy chiều rộng hình chữ nhật là 8cm