Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét △DAB và △CBD có:
∠DAB=∠DCB (= 90 độ), AB//DC => ∠ABD=∠BDC (=60 độ) (so le trong)
=> △DAB ∼ △CBD (g.g)
Ta có: ∠ADB=180 độ - 90 độ - 60 độ = 30 độ
mà ∠ADB=∠DCB => ∠DCB=30 độ (1)
Ta có: ∠BDI=∠CDI= \(\dfrac{60độ}{2}\)= 30 độ (2)
Từ (1), (2) ta có: ∠DCB=∠CDI= 30 độ
=> △IDC cân tại I
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
Do đo: ΔBDC\(\sim\)ΔHBC
b: \(BD=\sqrt{10^2-6^2}=8\left(cm\right)\)
\(HC=\dfrac{BC^2}{CD}=\dfrac{6^2}{10}=3.6\left(cm\right)\)
HD=10-3,6=6,4(cm)
a, Xét Δ BDC và Δ HBC, có :
\(\widehat{DBC}=\widehat{BHC}=90^o\)
\(\widehat{BCD}=\widehat{HCB}\) (góc chung)
=> Δ BDC ∾ Δ HBC (g.g)
b, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{DC}{BC}=\dfrac{BC}{HC}\)
=> \(\dfrac{10}{6}=\dfrac{6}{HC}\)
=> \(HC=\dfrac{6.6}{10}\)
=> HC = 3,6 (cm)
Ta có : DC = DH + HC
=> 10 = DH + 3,6
=> DH = 6,4 (cm)
c, Ta có : Δ BDC ∾ Δ HBC (cmt)
=> \(\dfrac{BC}{HC}=\dfrac{BD}{HB}\)
Xét Δ DHB và Δ BHC, có :
\(\widehat{DHB}=\widehat{BHC}=90^o\)
\(\dfrac{BC}{BD}=\dfrac{HC}{HB}\) (cmt)
=> Δ DHB ∾ Δ BHC (c.g.c)
=> \(\dfrac{DH}{BH}=\dfrac{HB}{HC}\)
=> \(HB^2=DH.HC\)
a) Xét \(\Delta ACD\) vuông tại C, có:
\(CAD+ADC=90\) độ \(\Rightarrow ADC=90độ-ADC=90-60=30độ\)
AC là pgiac BAD=> \(CAD=CAB=\dfrac{1}{2}BAD\Rightarrow BAD=2CAD=2.30=60độ\)
Hình thang ABCD, có: BAD=CAD=60 độ=> ABCD là hình thang cân
b) \(\Delta ACD\) vuông tại C có : DAC=30 độ => \(CD=\dfrac{1}{2}AD\) (đlí)
BC//AD=>BCA=CAD (so le trong)
Mà BAC=DAC (cm a)
=> BAC=BCA => tam giác ABC cân tại A =>BC=AB
ABCD là hthang cân => AB=CD
Ta có: \(P_{ABCD}=AB+BC+CD+AD=CD+CD+CD+2CD=20\)
\(\Leftrightarrow CD=\dfrac{20}{5}=4\left(cm\right)\Rightarrow AD=2.CD=2.4=8\left(cm\right)\)