K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2022

- Xét tam giác ODN có: AM//DN.

=>\(\dfrac{AM}{DN}=\dfrac{OM}{ON}\)(định lí Ta-let) (1)

- Xét tam giác OCN có: BM//CN.

=>\(\dfrac{BM}{CN}=\dfrac{OM}{ON}\)(định lí Ta-let) (2)

- Từ (1) và (2) suy ra \(\dfrac{AM}{DN}=\dfrac{BM}{CN}\)mà AM=BM (M là trung điểm AB)

Nên DN=CN. Vậy N là trung điểm của CD.

Vẽ hình luôn giúp tớ được không!!

 

20 tháng 6 2017

24 tháng 1 2021

Rồi sao nữa bn?

24 tháng 1 2021

hết rùi

 

7 tháng 2 2022

Chị bao nhiêu tuổi mà học giỏi thế

9 tháng 2 2020

Đây là một định lý trong hình thang , phát biểu rằng:

Trong 1 hình thang có 2 đáy không bằng nhau, trung điểm 2 cạnh đáy, giao điểm 2 đường chéo và giao điểm 2 cạnh bên thẳng hàng.
Chứng minh bài của bạn sẽ sử dụng Định lý TALET như sau 

\ A B C D M O N

Ta có AB // CD (gt) 

Áp dụng định lý Ta-let ta được:

\(\frac{AM}{DN}=\frac{OM}{ON};\frac{OM}{ON}=\frac{BM}{CN}\Rightarrow\frac{AM}{DN}=\frac{BM}{CN}\)(hệ quả Talet)

mà AM=BM ( do M là trung điểm AB)

=> DN=NC mà N thuộc DC

=> N là trung điểm DC