Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm được AIM =1350 ( lấy I Trên AB sao cho BI = BM) suy ra AI =CM , góc CMN =góc IAM ( cùng phụ AMB) vậy tam giác AIM =tam giác MCN ( c -g c)
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Gọi E là trung điểm AD
→ AE = ED = \(\frac{1}{2}\) AD
Mà BC = \(\frac{1}{2}\)AD (gt)
⇒ AE = BC (= \(\frac{1}{2}\) AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆA = ˆB = 90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACE = 45o
⇒ ˆACD = 90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIM= ˆNIC (2 góc đối đỉnh)
ˆIMA = ˆICN
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINI= IMICI (cặp cạnh t/u)
⇒ AIIM = NIIC
Xét ΔAIN và ΔMIC có:
AIIM = NIIC
ˆAIN = ˆMIC(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANI = ˆICM = ˆACB = 45o (Vì ΔABC vuông cân tại B)
→ ˆANM= 45o
Lại có: ˆAMN = 90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)
k cho mình nha
Con tham khảo tại câu dưới đây nhé.
Câu hỏi của Huyen Nguyen - Toán lớp 8 - Học toán với OnlineMath
Thua =]]
Gọi E là trung điểm AD
→ AE = ED = 1212 AD
Mà BC = 1212 AD (gt)
⇒ AE = BC (= 1212 AD)
Có: ABCD là hình thang(gt)
⇒ AD // BC (đn)
hay AE // BC (E ∈ AD- cv)
Xét tứ giác AECB có:
AE // CB (cmt)
AE = CB (cmt)
⇒ AECB là hình bình hành (DHNB)
Xét hình bình hành ABCE có:
ˆAA^ = ˆBB^ = 90o90o
AB = BC
⇒ ABCE là hình vuông
⇒ CE ⊥ AE tại E (đn)
hay CE ⊥ AD tại E
Xét ΔACD có:
CE là đường trung tuyến (cv)
CE là đường cao (CE ⊥ AD tại E - cmt)
⇒ ΔACD cân tại C (t/c)
mà ˆACEACE^ = 45o45o
⇒ ˆACDACD^ = 90o90o
⇒ ΔACD vuông cân tại C (đn)
Gọi I là giao điểm của AC và MN
Xét ΔAIM và ΔNIC có:
ˆAIMAIM^= ˆNICNIC^ (2 góc đối đỉnh)
ˆIMAIMA^ = ˆICNICN^
⇒ ΔAIM ᔕ ΔNIC (g.g)
⇒ AINIAINI = IMICIMIC (cặp cạnh t/u)
⇒ AIIMAIIM = NIICNIIC
Xét ΔAIN và ΔMIC có:
AIIMAIIM = NIICNIIC
ˆAINAIN^ = ˆMICMIC^(2 góc đối đỉnh)
⇒ ΔAIN ᔕ ΔMIC (c.g.c)
⇒ ˆANIANI^ = ˆICMICM^ = ˆACBACB^ = 45o45o (Vì ΔABC vuông cân tại B)
→ ˆANMANM^ = 45o45o
Lại có: ˆAMNAMN^ = 90o90o (AM ⊥ MN tại M)
⇒ ΔAMN vuông cân tại M (đpcm)