Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bài này trong SGK hay là SBT cũng có dạng tương tự hay sao ấy
Xét hình thang ABCD có: AE=ED (vì E là trung điểm AD)
BF=FC (vì F la trung điểm BC)
=> EF là đường trung bình của hình thang ABCD ( theo hệ quả của đường trung bình trong hình thang)
=> EF // AB // DC
lần lượt ta chứng minh được EK và Ì là những đường trung bình của tam giác ADC và DBC
từ đó suy ra cá kết quả: AK=KC và BI = ID
a) xét tam giác BAD ta có:
M là trung điểm AB (gt)
F là trung điểm BD (gt)
vậy MF là đường trung bình tam giác BAD
=>MF//AD và MF=1/2 AD (1)
xét tam giác ADC ta có:
P là trung điểm CD (gt)
E là trung điểm AC (gt)
vậy PE là đường trung bình tam giác ADC
=>PE//AD và PE=1/2 AD (2)
từ (1) và (2) => PE//MF và PE=MF=1/2 AD
tương tự như vậy với ME và PF ta có được ME//PF và ME=PF=1/2 BC
ta có:
ME=PF=1/2 BC (cmt)
MF=PE=1/2 AD (cmt)
AD=BC (gt)
vậy ME=PF=MF=PE
=>MEPF là hình thoi
b) vẽ tứ giác MQPN. gọi giao điểm QN và MP là K
xét tam giác ABD ta có:
Q là trung điểm AD (gt)
M là trung điểm AB (gt)
vậy MQ là đường trung bình tam giác ABD
=> MQ//BD và MQ=1/2 BD (1)
xét tam giác CBD ta có:
P là trung điểm CD (gt)
N là trung điểm BC (gt)
vậy PN là đường trung bình tam giác CBD
=> PN//BD và PN=1/2 BD (2)
từ (1) và (2)=> PN//MQ và PN=MQ
=>MQPN là hình bình hành
mà QN và MP là hai đường chéo và K là giao điểm
=>K là trung điểm của QN và MP (3)
xét hình thoi MEPF ta có:
MP và EF là hai đường chéo
K là trung điểm MP (cmt)
=> K là trung điểm EF (4)
từ (3) và (4)=> QN,MP,EF đồng quy tại K.
1: Xét tứ giác AECF có
AE//CF
AE=CF
Do đó: AECF là hình bình hành
Gọi giao điểm của EF với AC và BD lần lượt là F và K
Xét hình thang ABCD có
E là trung điểm của AD
EF//AB//CD
Do đó: F là trung điểm của BC
Xét ΔDAB có
E là trung điểm của AD
EK//AB
Do đó: K là trung điểm của ED
Xét ΔBDC có
F là trung điểm của BC
FK//CD
Do đó: K là trung điểm của BD