K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 2 2018

Hình thì dễ rồi you tự vẽ nha

Ta có ; OM // AB ( gt )

Theo hệ quả của định lý Ta lét ta có :

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{BD}\)( 1 )

ON // AB ( gt )

\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )

AB // CD ( gt )

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\)\(\Rightarrow\)\(\frac{OD}{OB+OD}=\frac{OC}{OC+OA}\)

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{AC}\)( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 )

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{ON}{AB}\)\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)

Vậy \(OM=ON\)

7 tháng 2 2018

ÁP DỤNG ĐỊNH LÍ TA-LÉT

\(\frac{OM}{CD}=\frac{AO}{AD}=\frac{OB}{CB}=\frac{ON}{CD}\)

17 tháng 2 2022

tham khảo :

https://lazi.vn/edu/exercise/582904/cho-hinh-thang-abcd-ab-cd-cheo-cat-nhau-tai-o-p

3 tháng 4 2017

BẠN DÙNG ĐỊNH LÝ TA-LÉT ĐỂ C/M OM=ON

Vì OM // AB & OM // CD nên 

\(\frac{OM}{AB}=\frac{DM}{AD}\&\frac{OM}{CD}=\frac{AM}{AD}\)

\(\Rightarrow\frac{OM}{AB}+\frac{OM}{CD}=\frac{DM}{AD}+\frac{AM}{AD}\)

\(\Leftrightarrow OM\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DM+AM}{AD}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OM}\)(1)

TƯƠNG TỰ \(\frac{1}{AB}+\frac{1}{CB}=\frac{1}{ON}\)(2)

CỘNG VẾ VỚI VẾ CỦA (1) VÀ (2) TA CÓ:

\(2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{ON}\)MÀ OM=ON(C/M TRÊN) NÊN MN=2.OM

\(\Rightarrow2\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{1}{OM}+\frac{1}{OM}=\frac{2}{OM}\)

\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{2.OM}=\frac{2}{MN}\left(ĐPCM\right)\)

31 tháng 3 2017

Mình mới học lớp 5 thôi nên chỉ vẽ hình thôi à! Thông cảm nha!

Hình như sau:

Thấy đúng thì !

6 tháng 2 2022

c. -Xét △ADC có: OM//DC (gt).

\(\Rightarrow\dfrac{MO}{DC}=\dfrac{AO}{AC}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{MO}=\dfrac{AC}{AO}\)

\(\Rightarrow\dfrac{DC}{OM}-1=\dfrac{OC}{AO}\) (1).

-Xét △BDC có: ON//DC (gt).

\(\Rightarrow\dfrac{ON}{DC}=\dfrac{BO}{BD}\) (định lí Ta-let).

\(\Rightarrow\dfrac{DC}{ON}=\dfrac{BD}{BO}\)

\(\Rightarrow\dfrac{DC}{ON}-1=\dfrac{OD}{BO}\)

-Xét △ABO có: AB//DC (gt).

\(\Rightarrow\dfrac{OD}{BO}=\dfrac{OC}{OA}=\dfrac{DC}{AB}\) (3)

-Từ (1), (2),(3) suy ra:

\(\dfrac{DC}{OM}-1=\dfrac{DC}{ON}-1=\dfrac{DC}{AB}\)

\(\Rightarrow\dfrac{DC}{OM}=\dfrac{DC}{ON}=\dfrac{DC}{AB}+1=\dfrac{AB+DC}{AB}\)

\(\Rightarrow\dfrac{1}{OM}=\dfrac{1}{ON}=\dfrac{AB+DC}{AB.DC}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

a: Xét ΔAOB và ΔCOD có 

\(\widehat{OAB}=\widehat{OCD}\)

\(\widehat{AOB}=\widehat{COD}\)

Do đó: ΔAOB∼ΔCOD

Suy ra: \(\dfrac{OA}{OC}=\dfrac{OB}{OD}=\dfrac{AB}{CD}\)

hay \(OA\cdot OD=OB\cdot OC\)

b: \(\dfrac{OA}{OC}=\dfrac{AB}{CD}\)

\(\Leftrightarrow OA=\dfrac{1}{2}\cdot6=3\left(cm\right)\)

 

6 tháng 2 2021

Ta có: MN // AB (gt); AB // CD(gt) => MN // AB // CD

Xét tam giác ABC có: OM // AB (MN // AB)

 =>  \(\dfrac{OM}{AB}=\dfrac{CM}{CA}\) (hệ quả định lý Ta lét trong tam giác) (1)

Xét tam giác ABD có: ON // AB (MN // AB)

=>   \(\dfrac{ON}{AB}=\dfrac{DN}{DB}\) (hệ quả định lý Ta lét trong tam giác) (2)

Xét hình thang ABCD có: MN // AB // CD (cmt)

 => \(\dfrac{CM}{CA}=\dfrac{DN}{DB}\) (định lý Ta lét trong hình thang) (3)

Từ (1) (2) (3) => OM = ON

Xét ΔOAB và ΔOCD có

góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng với ΔOCD
=>OA/OC=OB/OD=AB/CD=3/5

=>BO/BD=3/8; AO/AC=3/8

Xét ΔBDC có ON//DC
nên ON/DC=BO/BD

=>ON/10=3/8

=>ON=3,75cm

Xét ΔADC có OM//DC

nên OM/DC=AO/AC=3/8

=>OM=3,75cm

=>MN=7,5cm

12 tháng 2 2018

Biết làm câu a thì mình làm trước câu a thôi nha 

Ta có OM // AB 

\(\Rightarrow\)\(\frac{OM}{AB}=\frac{OD}{DB}\)( 1 )

ON // AB

\(\Rightarrow\)\(\frac{ON}{AB}=\frac{OC}{AC}\)( 2 )

AB // CD 

\(\Rightarrow\)\(\frac{OD}{OB}=\frac{OC}{OA}\Rightarrow\frac{OD}{OB+OD}=\frac{OC}{OA+OC}\Rightarrow\frac{OD}{DB}=\frac{OC}{AC}\) ( 3 )

Từ ( 1 ) , ( 2 ) , ( 3 ) suy ra \(\frac{OM}{AB}=\frac{ON}{AB}\)

\(\Rightarrow\)\(OM=ON\left(ĐPCM\right)\)

26 tháng 2 2018

Câu hỏi của trần trúc quỳnh - Toán lớp 9 - Học toán với OnlineMath

Em tham khảo tại đây nhé.