Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trl :
Ta có :
\(S_{ABD}=S_{ADC}\times2\) ( Vì có chung chiều cao hạ từ A xuống BD )
\(S_{EBD}=S_{EDC}\times2\) ( Vì có chung chiều cao hạ từ E xuống BC )
Suy ra : \(S_{BAE}=S_{CAE}\times2\)( Hiệu diện tích )
a: AD=DB
=>S ADE=S BDE
b: S ABE=2/3*36=24cm2
=>S ADE=12cm2
cho hình tam giác ABC. Trên AB lấy điểm D sao cho AD =1/3 AB và trên BC lấy điểm E sao cho EC =1/3 BC .Nối A với E, C với D chúng cắt nhau tại I
a, So sánh Diện tính AID và Diện tích CIE
b, Nối D với E. Chứng tỏ DE song song AC
Bài này hơi dài
ko làm đâu
mệt lắm
ai giỏi thì giúp mình với mình cảm ơn rất nhiều !!!!!
Nhanh lên nhé mai mình phải nộp rồi
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)