Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Diện tích toàn phần của hình lập phương là
Hình trụ có bán kính đáy là 20 cm và đường cao là 40 cm nên diện tích toàn phần của hình trụ là
Đáp án C
Do hình trụ và hình lập phương có cùng chiều cao nên ta chỉ cần chú ý đến mặt đáy như hình vẽ bên. Đường tròn đáy của hình trụ có bán kính bằng một nửa đường chéo của hình vuông
Do đó thể tích hình trụ cần tìm bằng
Hướng dẫn: D
+ Gọi x > 0 là cạnh của hình vuông ABCD và H là trung điểm cạnh AD
+ Dễ dàng chứng minh
+ Gọi O = AC ∩ BD và G là trọng tâm ∆ A S D , đồng thời d 1 , d 2 lần lượt là 2 trục đường tròn ngoại tiếp ABCD, ∆ S A D ( d 1 qua O và // SH, d 2 qua G và //AB)
⇒ I = d 1 ∩ d 2 là tâm mặt cầu ngoại tiếp khối chóp S. ABCD ⇒ R = SI
(trong video bài giảng chữa đề, phần này Thầy dùng công thức tính nhanh bán kính mặt cầu ngoại tiếp hình chóp trong trường hợp chóp có mặt bên vuông góc với mặt đáy).
+ Gọi E là điểm thỏa ADEC là hình bình thành
Chọn A.
Lời giải. Ta có bán kính hình nón r= a 2 , đường cao h=a,
Diện tích toàn phần
a) Khi a = 1dm:
Diện tích một mặt `(S) = a^2 = 1^2 = 1dm^2`
Thể tích `(V) = a^3 = 1^3 = 1dm^3`
Khi a = 3dm:
Diện tích một mặt `(S) = a^2 = 3^2 = 9dm^2`
Thể tích `(V) = a^3 = 3^3 = 27dm^3`
b) Để S = `25dm^2`, ta cần tìm giá trị của a. Ta có:
`a^2 = 25`
=> `a = √25 = 5dm`
c) Để V = `64dm^3`, ta cần tìm giá trị của a. Ta có:
`a^3 = 64`
=> `a = ∛64 = 4dm`
Đáp án B
Gọi O, O' lần lượt là tâm các hình vuông ABCD và A'B'C'D'. I là trung điểm đoạn OO'. Khi đó bán kính r của mặt cầu ngoại tiếp hình lập phương ABCD.A'B'C'D' là: