Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Gọi M là trung điểm của BC thì B C ⊥ A ' A M .
Từ A kẻ A H ⊥ A ' M , H ∈ A ' M . Khi đó A H ⊥ ( A ' B C ) .
Suy ra d A , A ' B C = A H = a 5 2 .
Góc giữa đường thẳng A ' B và mặt phẳng (ABC) bằng góc A ' M A ⏞ .
Theo giả thiết ta có A ' M A ⏞ = 60 °
Đặt AB = 2x thì A M = x 3 ; A ' A = 2 x 3 .
Suy ra A H = A ' A . A M A ' A 2 + A M 2 = 2 x 15 5
Từ giả thiết ta có 2 x 15 5 = a 5 2 ⇒ x = 5 a 15 12 Do đó
A A ' = 5 a 2 ; S A B C = 25 a 2 3 48
Vậy thể tích khối lăng trụ ABC.A'B'C' là V = 125 3 96 a 3 .
Chọn B.
Phương pháp:
- Xác định góc 60 0 (góc giữa hai đường thẳng cùng vuông góc với giao tuyến).
- Tính diện tích đáy và chiều cao rồi suy ra thể tích theo công thức V = Sh.
Cách giải:
Đáp án A
Ta có:
A I = 2 a 2 − a 2 = a 3 ; A A ' = A I tan 60 ° = a 3 . 3 = 3 a
Thể tích lăng trụ là:
V = A A ' . S A B C = 3 a . 1 2 2 a 2 sin 60 ° = 3 3 a 3
Đáp án A
Gọi I là trung điểm của BC. Ta có:
A I = a 3 2 ⇒ A ' A = A I tan 60 ° = 3 a 2
S B C C ' B ' = 3 a 2 a = 3 a 2 2
Thể tích của khối chóp A B C C ' B ' là:
V = 1 3 A I . S B C C ' B ' = 1 3 . a 3 2 . 3 a 2 4 = a 3 3 4
Chọn D.