K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 2 2019

14 tháng 9 2019

a) BB’ ⊥ A’B’ (ABB’A’ là hình chữ nhật)

BB’ ⊥ B’C’ (BCC’B’ là hình chữ nhật)

=> BB’ ⊥ mp(A’B’C’D’)

=> BB’ ⊥ B’D’ hay

Hình bình hành BDD’B’ có một góc vuông nên là hình chữ nhật

BB’ vuông góc với hai đường thẳng cắt nhau AB và BC

=> BB’ ⊥ mp(ABCD)

c) mp(ABB’A’) chứa BB’ mà BB’⊥ mp(ABCD)

=> mp(ABB’A’) ⊥ mp(ABCD)

17 tháng 12 2019

a) Ta có ABB’A’ là hình chữ nhật nên: AA’ // BB’ và AA’ = BB’

Tương tự ADD’A’ là hình chữ nhật:

AA’ // DD’ và AA’ = DD’

=> BB’ // DD’ và BB’ = DD’

Do đó BB’D’D là hình bình hành

=>BD // B’D’

b) BB’C’C là hình chữ nhật: BB’ // CC’ mà BB’ không thuộc mp(CC’D’D) và CC’ thuộc mp(CC’D’D) nên BB’ // mp(CC’D’D)

B’D’ // BD (cmt) mà B’D’ không thuộc mp (ABCD) và BD thuộc mp(ABCD) nên B’D’ // mp(ABCD)

c) Ta có: AB // CD (ABCD là hình chữ nhật)

AA’ // DD’ (ADD’A’ là hình chữ nhật)

Mà mp(ABB’A’) chứa hai đường thẳng cắt nhau AB và AA’ và mp(DCC’D’) chứa hai đường thẳng cắt nhau CD và DD’ => mp(ABB’A’) // mp(DCC’D’)

16 tháng 1 2018

a) Ta có ABB’A’ là hình chữ nhật nên: AA’ // BB’ và AA’ = BB’

Tương tự ADD’A’ là hình chữ nhật:

AA’ // DD’ và AA’ = DD’

=> BB’ // DD’ và BB’ = DD’

Do đó BB’D’D là hình bình hành

=>BD // B’D’

b) BB’C’C là hình chữ nhật: BB’ // CC’ mà BB’ không thuộc mp(CC’D’D) và CC’ thuộc mp(CC’D’D) nên BB’ // mp(CC’D’D)

B’D’ // BD (cmt) mà B’D’ không thuộc mp (ABCD) và BD thuộc mp(ABCD) nên B’D’ // mp(ABCD)

c) Ta có: AB // CD (ABCD là hình chữ nhật)

AA’ // DD’ (ADD’A’ là hình chữ nhật)

Mà mp(ABB’A’) chứa hai đường thẳng cắt nhau AB và AA’ và mp(DCC’D’) chứa hai đường thẳng cắt nhau CD và DD’ => mp(ABB’A’) // mp(DCC’D’)

4 tháng 5 2018

3 tháng 6 2018

24 tháng 8 2019

a) BC // FG ⇒ BC // (EFGH)

CD // HG ⇒ CD // (EFGH)

AD // EH ⇒ AD // (EFGH)

Vậy: ngoài AB, các cạnh song song với mặt phẳng (EFGH) là BC, CD, AD

b) CD // AB ⇒ CD // (ABFE)

và CD // (EFGH) ( theo ý a).

c) Vì AB // HG, AB = HG ⇒ ABGH là hình bình hành

 

⇒ AH // BG

⇒ AH // (BCGF)

Vậy mặt phẳng song song với đường thẳng AH là mặt phẳng (BCGF).

2 tháng 6 2019

a) BC // FG ⇒ BC // (EFGH)

CD // HG ⇒ CD // (EFGH)

AD // EH ⇒ AD // (EFGH)

Vậy: ngoài AB, các cạnh song song với mặt phẳng (EFGH) là BC, CD, AD

b) CD // AB ⇒ CD // (ABFE)

và CD // (EFGH) ( theo ý a).

c) Vì AB // HG, AB = HG ⇒ ABGH là hình bình hành

 

⇒ AH // BG

⇒ AH // (BCGF)

Vậy mặt phẳng song song với đường thẳng AH là mặt phẳng (BCGF).