K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2018

Đáp án C

Gi E Ftrung đim của BCAB O là trọng tâm tam giác ABC ta có  S O ⊥ A B C .

Do  A E ⊥ B C S O ⊥ B C ⇒ B C ⊥ ( S A E ) .

Dựng E K ⊥ S A  suy ra EKđoạn vuông góc chung cua SABC.

Tương tự dựng FI; RL là các đoạn vuông góc chung cùa 2 cạnh đoi diện. Do tính cht đối xứng ta d dàng suy ra EK, FI, RL đng quy tại đim M. Như vậy   d ≥ K + F I + R L = 3 E K

Mặt khác   K E = a 3 2 ⇒ cos S A O ^ = 1 3 ⇒ s i n S A O ^ = 2 2 3

Do đó   K E = A E . sin A = a 3 2 . a 2 3 = a 6 3

Do vậy  d m i n = a 6 .

27 tháng 12 2018

Đáp án C

Gọi E và F là trung điểm của BC và AB và O là trọng tâm tam giác ABC ta có: S O ⊥ A B C

Do A E = B C S O = B C ⇒ B C ⊥ S A E . Dựng E K ⊥ A suy ra EK là đoạn vuông góc cung của SA và BC. Tương tự dựng FI; RL là các đoạn vuông góc chung của 2 cạnh đối diện.

Do tính chất đối xứng ta dễ dàng suy ra EK, FI, RL đồng quy tại điểm M

Như vậy  d ≥ E K + F I + R L = 3 E K

Mặc khác  O A = a 3 3 ⇒ cos S A O ⏜ = 1 3 ⇒ sin S A O ⏜ = 2 2 3

Do đó:  K E = A E sin A = a 3 2 − 2 2 3 = a 6 3

Do vậy  d min = a 6

17 tháng 10 2017

Mặt cầu (S) có tâm I(-1;2;-3), R = 5. Nhận thấy A 2 ; 2 ; 1 ∈ S . Do đó (S) là mặt cầu ngoại tiếp tứ diện vuông ABCD. Gọi G là trọng tâm tam giác BCD ta có

Vì vậy 

Chọn đáp án D.

Dấu bằng xảy ra khi và chỉ khi  I G ⊥ B C D ⇔ B C D :   3 x + 4 z + 20 = 0 .

Chọn đáp án D.

21 tháng 6 2019

21 tháng 3 2018

26 tháng 2 2019

Đáp án D

Phương pháp:

+ Tìm tâm và bán kính của mặt cầu

+ Xác định vị trí tương đối của mặt phẳng và mặt cầu để suy ra vị trí của điểm M

+ Tìm tọa độ của đường thẳng và mặt cầu thì ta giải hệ phương trình gồm phương trình đường thẳng và phương trình mặt cầu

Cách giải:

Mặt cầu (S) có tâm 

nên mặt phẳng (P) không cắt mặt cầu (S).Khi đó điểm  M  thuộc mặt cầu (S) sao cho khoảng cách từ M  đến mặt phẳng (P) là nhỏ nhất thì M  là giao điểm của đường thẳng d  đi qua I , nhận  n P → = 2 ; - 1 ; 2  làm VTCP với mặt cầu.

Phương trình đường thẳng 

Tọa độ giao điểm của đường thẳng d  và mặt cầu (S) thỏa mãn hệ phương trình

23 tháng 2 2018

Đáp án D

Gọi E là giao điểm của NP và CD. Gọi G là giao điểm của NP và CC’. Gọi K là giao điểm của MG và B’C’. Gọi Q là giao điểm của ME và AD. Khi đó mặt phẳng (MNP) chính là mặt phẳng (MEG). Gọi d 1 ,   d 2  lần lượt là khoảng cách từ C, A đến mặt phẳng (MEG). Do AC cắt (MEG) tại điểm H (như hình vẽ) nên d 1 d 2 = H C H A . Do tứ diện CMEG là tứ diện vuông tại C nên

1 d 1 2 = 1 C M 2 + 1 C E 2 + 1 C G 2

Ta có G C ' G C = C ' N C E = 1 3  

 

Suy ra G C = 3 2 C C ' = 9 a 2  

Như vậy: 1 d 1 2 = 1 a 2 + 4 9 a 2 + 4 81 a 2  

Từ đó d 1 2 = 81 a 2 12 ⇒ d 1 = 9 11 . Ta có Q D M C = E D E C = 1 3 ⇒ Q D = a 3  

Ta có Δ H C M đồng dạng với Δ H A Q  nên:

H C H A = M C A Q = a 2 a − a 3 = 3 5 ⇒ d 1 d 2 = 3 5 ⇒ d 2 = 5 3 d 1 = 5.9 a 3.11 = 15 a 11

16 tháng 6 2018

24 tháng 9 2019

Đáp án B

Ta có d D ; A B ' C = d B ; A B ' C mà  A M A D = 3 4

Và 1 d 2 B ; A B ' C = 1 A B 2 + 1 B C 2 + 1 B B ' ⇒ d M ; A B ' C = a 2 .  

Gọi E, F lần lượt là trung điểm của AD’, B’C.

Suy ra EF là đoạn vuông góc chung cuả AD’, B’C.

Do đó d A D ' ; B ' C = E   F = A B = a .  Vậy  x y = a . a 2 = a 2 2 .