Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có D đối xứng vs a qua O (gt)
=> O là trung điểm của AD
Xét tứ giác ABCD có
BC cắt AD tại O
Mặt khác ta có O là trung điểm của BC
O là trung điểm của AD
nên tứ giác ABCD là hình bình hành
Xét hình bình hành ABCD có góc A = 900
=> Hình bình hànhABCD là hình chữ nhật
b, Xét tam giác AED có
AH = HE
AO = DO
=> HO là đường trung bình của tam giác
=> HO // ED
=> góc H bằng goc E vì đồng vị
Mà AH vuông góc vs BC
=> góc H = 90o
=> E bằng 90o
=> AE vuông góc vs ED
Xét tam giác AED c0s E bằng 90 độ nên tam giác ADE vuông
c,Đợi tí mình giải tiếp nhé
a) Ta có: A và D đối xứng với nhau qua O(gt)
⇒O là trung điểm của AD
Xét tứ giác ABDC có:
O là trung điểm của đường chéo BC(gt)
O là trung điểm của đường chéo AD(cmt)
mà \(BC\cap AD=\left\{O\right\}\)
Do đó: ABDC là hình bình hành(dấu hiệu nhận biết hình bình hành)
mà \(\widehat{CAB}=90\)độ(ΔCAB cân tại A)
nên ABDC là hình chữ nhật(dấu hiệu nhận biết hình chữ nhật)
b)* chứng minh ΔAED vuông
Kẻ EO
Xét ΔOHA (\(\widehat{OHA}=90\) độ) và ΔOHE (\(\widehat{OHE}=90\) độ) có
OH là cạnh chung
HA=HE(gt)
Do đó: ΔOHA=ΔOHE(hai cạnh góc vuông)
⇒OA=OE(hai cạnh tương ứng)
mà \(OA=\frac{AD}{2}\)(do O là trung điểm của AD)
nên \(OE=\frac{AD}{2}\)
Xét ΔAED có:
OE là đường trung tuyến ứng với cạnh AD (do O là trung điểm của AD)
mà \(OE=\frac{AD}{2}\)(cmt)
nên ΔAED vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
* chứng minh CE⊥BE
Ta có: AO là đường trung tuyến ứng với cạnh huyền BC của ΔCAB vuông tại A(do O là trung điểm của BC)
⇒\(AO=\frac{BC}{2}\)(định lí 1 về từ hình chữ nhật áp dụng vào tam giác vuông)
mà AO=OE(cmt)
nên \(EO=\frac{BC}{2}\)
Xét ΔCEB có:
EO là đường trung tuyến ứng với cạnh BC(do O là trung điểm của BC)
mà \(EO=\frac{BC}{2}\)(cmt)
nên ΔCEB vuông tại E(định lí 2 về từ hình chữ nhật áp dụng vào tam giác vuông)
hay \(\widehat{CEB}=90\) độ
⇒CE⊥BE(đpcm)
Tam giác AOB ~ tam giác COD
=> [TEX]\frac{OA}{OC}[/TEX] = [TEX]\frac{OB}{OD}[/TEX] =[TEX]\frac{AB}{CD}[/TEX]
=> [TEX]\frac{OA +OB}{OC +OD}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (1)
Tương tự ta cũng có tam giác IAB ~ tam giác IDC
=> [TEX]\frac{IA +IB}{ID + IC}[/TEX] = [TEX]\frac{AB}{CD}[/TEX] (2)
Từ (1)và (2) => đpcm
Câub:
DỄ C/M tam giác MBO ~ tam giác NDO ( MB/DN = OB/OD ; Góc MBO = góc ODN)
=> góc MOB = góc DON
=> M ; O ; N thẳng hàng (3)
Dễ c/m I ; M ; N thẳng hàng ( cái này cực dễ ) (4)
=> Từ (3)và (4) => đpcm