K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 7 2017

Đáp án là D 

+) Gọi độ dài cạnh đáy là x, gọi M là trung điểm của CD, O ACBD.

 =>  ((SCD);( ABCD)) =  SMO=  α   .

+) Theo giả thiết

+) Từ (1) và (2) ta có hệ: 

3 tháng 3 2019

Đáp án A

Gọi O là tâm của hình vuông ABCD.

Do S.ABCD là hình chóp đều nên SO  (ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

9 tháng 9 2017

Gọi O là tâm của hình vuông ABCD. Do S.ABCD là hình chóp đều nên SO ⊥(ACBD)

Suy ra, OB là hình chiếu vuông góc của SB lên mp(ABCD)

18 tháng 4 2017

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ. Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích...
Đọc tiếp

Bài 5. Cho hình chóp tứ giác đều S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên hợp với đáy một góc  . Tính VS ABCD . theo a và  . Bài 6. Tính thể tích khối chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc ASB = α . Áp dụng: Tính VS ABCD . trong trường hợp α = 60 độ.

Bài 7. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc ABC =120độ . Cho SA vuông góc với đáy và SC = 2a .Tính thể tích hình chóp S.ABCD.

Bài 8. Cho hình chóp S.ABCD có đáy ABCD là một hình thang cân (AB//CD) với AC=20 cm BC=15 cm AB=25 cm . Cho SA vuông góc với đáy và SA =18cm . Tính thể tích của khối chóp.

Bài 9. Cho hình chóp S.ABC có SA vuông góc với đáy. Mặt bên SBC là tam giác đều cạnh a. Cho gócBAC =120 . Tính VS ABC .

. Bài 10. Cho khối chóp S.ABC có đường cao SA bằng a, đáy là tam giác vuông cân có AB= BC= a . Gọi B' là trung điểm của SB, C' là chân đường cao hạ từ A của tam giác S.ABC:

a.Tính thể tích khối chóp S.ABC

b.Chứng minh SC vuông góc với (AB'C')

c.Tính thể tích khối chóp S.ABC

0
NV
20 tháng 7 2021

Gọi O là tâm đáy \(\Rightarrow SO\perp\left(ABCD\right)\)

Gọi M là trung điểm AB \(\Rightarrow AB\perp OM\Rightarrow AB\perp\left(SOM\right)\)

\(\Rightarrow\widehat{SMO}\) là góc giữa mặt bên  và đáy hay \(\widehat{SMO}=60^0\)

\(SO=OM.tan\widehat{SMO}=\dfrac{a}{2}.tan60^0=\dfrac{a\sqrt{3}}{2}\)

\(V=\dfrac{1}{3}SO.S_{ABCD}=\dfrac{1}{3}.\dfrac{a\sqrt{3}}{2}.a^2=\dfrac{a^3\sqrt{3}}{6}\)

14 tháng 12 2019

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Hình nón nội tiếp có đường sinh là :

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:

Giải sách bài tập Toán 12 | Giải sbt Toán 12 Giải sách bài tập Toán 12 | Giải sbt Toán 12

15 tháng 4 2018

Chọn B.

Gọi H = (AC) ∩ (BD), khi đó S HBA = S SAB . cos 60 °

6 tháng 11 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Theo giả thiết ta có tam giác đáy ABC là tam giác đều.

Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = a. Đặt OI = r , SO = h , ta có AO = 2r và SIA = α .

Do đó Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4

Ta suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Gọi S xq  là diện tích xung quanh của hình trụ ta có công thức  S xq  = 2 π rl trong đó

Giải sách bài tập Toán 12 | Giải sbt Toán 12

và Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vậy Giải sách bài tập Toán 12 | Giải sbt Toán 12

Các mặt bên SAB, SBC , SCA là những phần của ba mặt phẳng không song song với trục và cũng không vuông góc với trục nên chúng cắt mặt phẳng xung quanh của hình trụ theo những cung elip. Các cung này có hình chiếu vuông góc trên mặt phẳng (ABC) tạo nên đường tròn đáy của hình trụ.

6 tháng 5 2017

Chọn C