Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C.
Ta có SAD là tam giác đều nên S H ⊥ A D
Mặt khác S A D ⊥ A B C D ⇒ S H ⊥ A B C D .
Dựng B E ⊥ H C ,
do B E ⊥ S H ⇒ B E ⊥ S H C
Do đó d = B E = 2 a 6 ; S H = a 3 ; A D = 2 a
Do S C = a 15 ⇒ H C = S C 2 − S H 2 = 2 a 3 .
Do S A H B + S C H D = 1 2 a A B + C D = S A B C D 2
suy ra V S . A B C D = 2 V S . H B C = 2 3 . S H . S B C H
= 3 2 a 3 . B E . C H 2 = 4 a 3 6 .
Đáp án A
Ta có O M = 1 3 A M = a 3 3
Lại có d O ; S B C = O H = a 2 ⇒ S O = a
Mặt khác R N = O A = 2 a 3 3 ; h = S O = a ⇒ V = 1 3 π R 2 h = 4 π a 3 9
Chọn C.
Phương pháp
Sử dụng quan hệ vuông góc giữa đường thẳng và mặt phẳng để xác định khoảng cách
Ta tính SO dựa vào công thức thể tích hình chóp, tính OH dựa vào hệ thức lượng trong tam giác vuông.
Cách giải:
Xét tam giác SOM vuông tại M có OH là đường cao nên theo hệ thức lượng trong tam giác vuông ta có